
RELATIVITY (MTH6132)

PROBLEM SET 1

HAND IN ONLY the STARRED QUESTIONS.

Write your name and student number at the top of your assignment and staple all
the pages together.

1 Starting from the Galilean transformation in the form

r′ = r − vt, v = (vx, vy, vz),

show that the scalar wave equation
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does not remain invariant under these transformations.
[Hint: recall that t = t(t′, x′, y′, z′) and x = x(t′, x′, y′, z′). Use the chain rule of
partial differentiation to show that
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2 Starting from the Lorentz transformations between two frames F and F ′ in standard
configuration (with F ′ moving with velocity of magnitude v relative to F ) show by
adding and subtracting x′ and ct′ that
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. Use these expressions to show that the combination of two Lorentz

transformations with velocities v1 and v2, respectively, is a Lorentz transformation.
What is the velocity of the composite transformation?

3 In Joe’s frame of reference a ray of light is shot at t = 0 from x = L towards the
origin where a mirror reflects it back. The ray reaches x = 2L at time t1. Draw a
spacetime of the situation as seen by Joe. Draw also the situation as seen by Moe
who is moving with positive velocity v < c along Joe’s x-axis.

To be handed in on Wednesday 12th October by 6pm in the
blue box in the second floor of the School of Mathematical
Sciences.
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The following is not to be handed in.

1. Define the following:

• Frame of reference

• Inertial Frame

• Galilean Principle of Relativity

• Standard configuration

• Spacetime and worldlines

2. Give the Galilean transformations between inertial frames in standard configura-
tion.

3. Show that Newton’s second law is invariant under Galilean transformations.

4. State Einstein’s postulates of Special Relativity.


