Brunel University Queen Mary, University of London Royal Holloway, University of London University College London

Intercollegiate post-graduate course in High Energy Physics

Paper 2: The Standard Model

Wednesday, 31 January 2007

Time allowed for Examination: 3 hours

Answer **ALL** questions

Books and notes may be consulted

The Standard Model

Question 1 (4 marks)

At a collider, two high energy particles, A and B with energies E_A and E_B , which are much greater than their rest masses, collide head on. Derive the expression for the centre-of-mass energy. [1]

Using this expression, what would be the centre-of-mass energy of a proposed future facility ("LHeC") which will collide 7 TeV protons with 70 GeV electrons? [1]

Now consider particle B (the proton) to be at rest. Derive the formula for the centre-ofmass energy of such a fixed-target experiment. [1]

What electron beam energy would be required in the fixed-target experiment in order to achieve the same centre-of-mass energy as in the proposed LHeC facility? [1]

Question 2 (6 marks)

Draw the simplest Feynman diagrams for $e^-\mu^- \to e^-\mu^-$ scattering and e^+e^- annihilation to $\mu^+\mu^-$. [2]

Using the amplitude for $e^{-}(k) + \mu^{-}(p) \rightarrow e^{-}(k') + \mu^{-}(p')$,

$$|T_{\rm fi}|^2 = \frac{8e^4}{q^4} \left[(k' \cdot p')(k \cdot p) + (k' \cdot p)(k \cdot p') \right],$$

show that the cross section for $e^+ + e^- \rightarrow \mu^+ + \mu^-$ is:

$$\frac{d\sigma}{d\Omega} = \frac{1}{64\pi^2 s} 2e^4 \left[\frac{t^2 + u^2}{s^2}\right]$$
[2]

Starting from $\sigma = 4\pi \alpha^2/3s$ and explicitly showing your working, demonstrate that the total cross section can be written in approximate form as:

$$\sigma \sim \frac{20 \text{ (nb)}}{E_{\text{beam}}^2 \text{ (in GeV^2)}},$$

where E_{beam} is the beam energy (of both the e^+ and e^-). ($\alpha = \frac{1}{137.036}$, (1 GeV)⁻² = 0.389 mb)

Question 3 (7 marks)

The amplitude for the decay $\pi^-(q) \to \mu^-(p) + \bar{\nu_{\mu}}(k)$ is given by:

$$|T_{\rm fi}|^2 = \frac{G_F^2}{2} f_\pi^2 \cos^2 \theta_c m_\mu^2 \text{Tr} \left[(\not p + m_\mu) (1 - \gamma^5) \not k (1 + \gamma^5) \right]$$

Use Trace theorems to show this simplifies to

$$|T_{\rm fi}|^2 = 4G_F^2 f_\pi^2 \cos^2 \theta_c m_\mu^2 (p \cdot k)$$
[4]

The ratio of decay rates:

$$R = \frac{\Gamma(K^- \to e^- + \bar{\nu_e})}{\Gamma(K^- \to \mu^- + \bar{\nu_\mu})}$$

can be written in terms of the particle masses. Use this relation to give the value to 2 decimal places showing that the rate is close to that measured from experiment, $\sim 2.44 \times 10^{-5}$.

$$(m_e = 0.511 \text{ MeV}, m_\mu = 105.7 \text{ MeV}, m_K = 493.7 \text{ MeV})$$
 [3]

Question 4 (6 marks)

For a $2 \rightarrow 2$ scattering process, $A + B \rightarrow C + D$ write down the Mandelstam variables in terms of the 4-momenta of the particles. [2]

In pp collisions, a final state high-energy ("direct") photon can be produced by either $q\bar{q}$ annihilation or the Compton process (initial state: gq). Draw the four Feynman diagrams for the production of direct photons, labelling each as either a s-, t- or u-channel process. [4]

Question 5 (3 marks)

Starting from the Dirac equation in terms of α and β matrices:

$$E\psi = (\alpha_i p_i + \beta m)\psi$$

derive its covariant form.

Question 6 (5 marks)

For $\sqrt{s} = 35$ GeV, what would you expect the value of

$$R = \frac{\sigma(e^+e^- \to \text{hadrons})}{\sigma(e^+e^- \to \mu^+\mu^-)}$$

to be when considering only the EM coupling?

Draw a higher-order diagram (i.e. consideration of the strong force) which would affect this value. [1]

Briefly describe how such higher-order diagrams led to the discovery of the gluon. [2]

[3]

Question 7 (4 marks)

The Klein-Gordon equation can be written as:

$$i(\Box^2 + m^2)\psi = -iV\psi$$

Hence obtain the propagator for a spinless particle in terms of the mass, m, and 4-momentum, p. [2]

Now include spin and using the Dirac equation:

$$-i(\not p - m)\psi = -iV\psi$$

obtain the form of the propagator for an electron

Question 8 (5 marks)

The cross section for the Bhabha process, $e^+ + e^- \rightarrow e^+ + e^-$, can be written as (modulo some constants):

$$\frac{d\sigma}{d\Omega}\sim \frac{t^2+u^2}{s^2}+\frac{s^2+u^2}{t^2}+\frac{2u^2}{st}$$

Draw the two Feynman diagrams for this process and identify each with the corresponding term in the cross section stating whether the reaction is s-, t- or u-channel. [4]

What is the origin of the third term in the cross section? [1]

Question 9 (6 marks)

The measured relative rate:

$$R = \frac{\Gamma(D^0 \to K^+ + \pi^-)}{\Gamma(D^0 \to K^- + \pi^+)}$$

is 3.8×10^{-3} . Draw the diagrams of the decays and briefly explain the difference in rate of the two channels. [3]

Using the CKM matrix,

$$\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 0.97383 & 0.2272 & 0.004 \\ 0.2271 & 0.97296 & 0.042 \\ 0.008 & 0.042 & 0.9991 \end{pmatrix},$$

predict this rate to within a factor of 2. (NB. remember the decay rate is $\sim |T_{\rm fl}|^2$.) [3]

Question 10 (7 marks)

Starting from the neutral current Lagrangian,

$$\mathcal{L}_{\rm NC} = \left(g_W J^3_\mu \sin \theta_W + g' J^{\rm EM}_\mu \cos \theta_W - g' J^3_\mu \cos \theta_W\right) A^\mu + \left(g_W J^3_\mu \cos \theta_W - g' J^{\rm EM}_\mu \sin \theta_W + g' J^3_\mu \sin \theta_W\right) Z^\mu$$

determine the relationship between the couplings g_W and g' and show that they can be replaced by e and θ_W . [4]

Hence derive the vector and vector-axial couplings, c_V and c_A of the Z^0 to leptons and quarks. [3]

Question 11 (8 marks)

The variables x, y and Q^2 define the kinematics of deep inelastic scattering. Write these variables in terms of the four vectors of the initial particles. [2]

The DGLAP equations are:

$$\frac{dQ_i(x,Q^2)}{d\log Q^2} = \frac{\alpha_s}{2\pi} \int_x^1 \frac{dy}{y} \left[Q_i(y,Q^2) P_{qq}\left(\frac{x}{y}\right) + G(y,Q^2) P_{qg}\left(\frac{x}{y}\right) \right]$$
$$\frac{dG(x,Q^2)}{d\log Q^2} = \frac{\alpha_s}{2\pi} \int_x^1 \frac{dy}{y} \left[Q_i(y,Q^2) P_{gq}\left(\frac{x}{y}\right) + G(y,Q^2) P_{gg}\left(\frac{x}{y}\right) \right]$$

[4]

[2]

Explain the functions Q_i and G and the four P_{ii} functions.

Hence briefly explain in terms of the different processes why the structure function, F_2 , depends on Q^2 . [2]

Question 12 (8 marks)

Explain the meaning of a global and a local gauge transformation.

For the Dirac equation to be covariant under a local gauge transformation, we replace ∂^{μ} by $D^{\mu} = \partial^{\mu} + iqA^{\mu}$. Demonstrate that $D^{\mu}\psi$ transforms in the same was as ψ , *i.e.* $(D^{\mu}\psi)' = e^{iq\alpha(x)}D^{\mu}\psi$. [2]

Explain the four terms in the Lagrangian of QED:

$$\mathcal{L} = \bar{\psi}(i\gamma_{\mu}\partial^{\mu} - m)\psi + e\bar{\psi}\gamma_{m}uA^{\mu}\psi - \frac{1}{4}F_{\mu\nu}F^{\mu\nu}$$
[4]

Question 13 (6 marks)

												-	
What	mananter	ofthe		interaction	100 0 0 10 0	that	nhotona	10	not	alf com	<u>_1_2</u>	·	1
wnat	Droberty.	orthe	F /IVI	interaction	means	LUAL	DHOLOHS	(10)	TOL.	sen-com	DIE		
1111000	proport.	01 0110		111001000101011	111000110	011000	p11000110	~~~		0011 0004			

Draw a Feynman diagram of a process at the LHC in which three gluons couple at one vertex. [2]

Explain briefly why the QCD coupling, α_s , has a different behaviour with the scale, Q^2 , compared to that of the QED coupling, α . [3]

Question 14 (6 marks)

Outline the main steps in the Weinberg-Salam formulation of $SU(2) \times U(1)$ which yields the mass of the W boson to be $vg_W/2$ where v is the value of the field at which the Higgs potential is a minimum. [3]

Use the above and $M_Z = \frac{1}{2}v(g_W^2 + g'^2)^{1/2}$ to relate M_Z and M_W in terms of the Weinberg angle. [3]

Question 15 (6 marks)

From the Lagrangian

$$\frac{1}{8} \left[g_W^2 (v+h)^2 (W_\mu^1 - iW_\mu^2) (W_\mu^1 + iW_\mu^2) - (v+h)^2 (g'B_\mu - g_W W_\mu^3) (g'B^\mu - g_W W_3^\mu) \right]$$

obtain the WWH and WWHH couplings.

Hence derive the ZZH and ZZHH couplings. (Simplify your answer to remove any dependency on v.) [4]