Mathematical Methods II Natural Sciences Tripos Part IB Dr R. E. Hunt Lent 2002

Hints and Solutions for Example Sheet 4: Complex Analysis, Contour Integration and Transform Theory

- 1 The imaginary parts are $\cos x \sinh y$, $-e^{y^2-x^2} \sin 2xy$ and $-y/(x^2+y^2)$ respectively (ignoring arbitrary constants). Hence the complex functions are $\sin z$, $\exp(-z^2)$ and 1/z.
- **2** Define $\Phi(x, y) = -E \operatorname{Re}(z a^2/z)$ where z = x + iy. Note that $\nabla^2 \Phi = 0$. Write $z = re^{i\theta}$, and hence show that $\Phi = 0$ on r = a. Find also an approximate expression for Φ as $r \to \infty$ and deduce that at large distances, $-\nabla \Phi$ has magnitude E in the x-direction.
- 3 $\log \tanh z$ is analytic except when $\tanh z$ is real and negative: show that this does not occur in the domain. For the bar of width L, the temperature is

$$\operatorname{Im}\left\{\frac{2T_0}{\pi}\operatorname{log}\tanh\frac{\pi z}{2L}\right\}.$$

4 $(z-i)^2/(z+1)$ has a double zero at z = i and a simple pole at z = -1. $(1+z)^{-1} - (1-z)^{-1}$ has a simple zero at z = 0 and simple poles at $z = \pm 1$. $(z^2+i)^{-1}$ has no zeros but simple poles at $z = \pm e^{-\pi i/4}$. $\sec^2 \pi z$ also has no zeros but double poles at $z = n + \frac{1}{2}$ (where n is any integer). $\sin z^{-2}$ has simple zeros at $z = \pm 1/\sqrt{n\pi}$ for positive integers n, and a (non-isolated) essential singularity at z = 0.

 $\sinh\{z/(z^2-1)\}$ has simple zeros at z=0 and at

$$z = -\frac{i}{2n\pi} \pm \sqrt{1 - \frac{1}{4n^2\pi^2}}$$

(from solving $z/(z^2-1) = n\pi i$) for any non-zero integer n. It has essential singularities at $z = \pm 1$ (its growth is exponentially fast near each of the singularities).

 $(\tanh z)/z$ has zeros at $z = m\pi i$ for non-zero integers m, simple poles at $z = (n + \frac{1}{2})\pi i$ for integers n, and a removable singularity at z = 0.

5 Part (i) was proved in lectures, and parts (ii)–(iv) follow from it. For part (v), write down the Laurent expansion of f and substitute it into the given formula.

- 6 $(z+1)/z^2$ has a double pole at z = 0 with residue 1; e^{-z}/z^3 has a pole of order 3 at z = 0 with residue $\frac{1}{2}$; and $\sin^2 z/z^5$ has a pole of order 3 at z = 0 with residue $-\frac{1}{3}$ (use the Taylor expansion of sin). There are simple poles of $\cot z$ at $z = n\pi$ (*n* an integer), with residue 1 at each pole (use part (iv) of the previous question). Finally, $z^2/(1+z^2)^2$ has double poles at $z = \pm i$, with residues $\mp \frac{1}{4}i$ (use part (v) of the previous question).
- 7 There are infinitely many possibilities; some are shown below. The values of the function on either side of the cuts are marked (x = Re z, y = Im z).

- 8 Most of this question has been done in lectures. For the final equation, apply Cauchy's formula to the function f'(z).
- **9** Use Cauchy's formula differentiated n times with respect to z_0 ; and find a bound for the integral round the circle. To prove Liouville's Theorem, set n = 1 and observe that the formula is true for all r; and also for all z_0 .
- 10 Proceed as for the trigonometric functions worked example in lectures. There is a pole inside the contour at $z = a^{-1}$ with residue $(a^{n-1}-a^{n+1})^{-1}$. The answer is $2\pi/a^n(a^2-1)$.
- 11 Proceed as for the Fourier transform worked example in lectures; take the real part to obtain the given equality. The general result, valid for both positive and negative k, is $\pi e^{-|k|}$, because it must be an even function of k.
- 12 (i) Use a keyhole contour, as in the branch cut worked example in lectures.
 - (ii) Proceed as for the trigonometric functions worked example in lectures. Note that the upper limit of the integral is only π , not 2π , but that you can double it up. You should obtain a fourth-degree polynomial on the denominator; this must have roots when $\sin \theta = \pm ia$ (why?). Find these roots and show that two are inside the unit circle. [A better (quicker) method is to first replace $\sin^2 \theta$ by $\frac{1}{2}(1 - \cos \phi)$ where $\phi = 2\theta$; then the polynomial on the denominator is only quadratic.]
 - (iii) If you use a semicircular contour, then there are four poles within the contour. At any of these poles (say z_0), the residue is $1/8z_0^3$ (using L'Hôpital's Rule). The sum of the residues is $\frac{1}{4}i(\sin\frac{\pi}{8} \sin\frac{3\pi}{8})$, and (believe it or not) each sin can be expressed in terms of the square root which appears in the answer. If instead you use the suggested approach of a contour which forms a sector of a circle, only one pole is enclosed and the answer is considerably easier to obtain.
 - (iv) Integrate $\exp(\frac{1}{2}iaz^2)$ round a sector of a circle of angle $\pi/4$. One of the three resulting integrals can be expressed as a standard real integral, for which you know the answer. It is difficult to prove that the integral round the large circular arc vanishes in the limit; to do it formally you would need to use the method used to prove Jordan's Lemma.
 - (v) Proceed as for the worked example in lectures with a singular point on the axis. You will need to define a branch cut for $\log z$, which can be taken either along the positive real axis or along the negative imaginary axis (say); in either case the value of $\log z$ on the positive real axis is simply $\log x$. The contribution from the negative real axis has three parts; one is the same as the contribution from the positive real axis, one is purely imaginary (and so can be removed by taking real parts) and one is a standard integral.

13 Proceed as for the Fourier transform worked example in lectures. The required function is

$$\frac{1}{2}e^{-|x|/\sqrt{2}}\sin\left(\frac{\pi}{4}+\frac{|x|}{\sqrt{2}}\right)$$

14 Integrate $\oint \operatorname{sech} z \, dz$ around the given countour. The real axis gives you 2*I* where *I* is the required integral. When $z = i\pi + x$, show that $\operatorname{sech} z = -\operatorname{sech} x$, so that the upper side of the rectangular contour gives 2*I* as well. The two vertical sides of the rectangle give zero as $R \to \infty$, which you can demonstrate by showing that $|\cosh(R + iy)| \ge \sinh R$.

The only singularity of the integrand within the contour is at $z = i\pi/2$, where it has a simple pole with residue -i. The result follows.

- **15** (i) $(p-\alpha)^{-1}$; $n!/p^{n+1}$; $p/(p^2-\alpha^2)$; $2\alpha p/(p^2+\alpha^2)^2$; $e^{2(1-p)}/(p-1)$; $(e^{-ap}-e^{-bp})/p$.
 - (ii) For the penultimate inversion, take care over in which direction you close the inversion contour. For the final inversion, split it into two parts and invert each separately.
- 16 (i) Use partial fractions before inverting. The answer is $x = 3t + 2\sin 2t$.
 - (ii) You should obtain a first order differential equation for $\bar{x}(p)$, which you can solve using an integrating factor to obtain $\bar{x}(p) = p^{-2} + ce^{p^2/2}$, where c is an arbitrary constant. Evaluate c by considering the limit of $p\bar{x}(p)$ as $p \to \infty$. The answer is x = t.
- 17 Find $\bar{f}(p)$ (you should obtain $(p+1)^{-1}e^{-p-1}$). Take the Laplace transform of each equation and solve the resulting linear simultaneous equations to obtain

$$\bar{x} = \frac{p+5}{(p+1)(p+2)(p+4)}e^{-p-1},$$
$$\bar{y} = \frac{3}{(p+1)(p+2)(p+4)}e^{-p-1}.$$

Use partial fractions before inverting to obtain the solution

$$x = \frac{4}{3}e^{-t} - \frac{3}{2}e^{1-2t} + \frac{1}{6}e^{3-4t},$$

$$y = e^{-t} - \frac{3}{2}e^{1-2t} + \frac{1}{2}e^{3-4t}$$

for t > 1 (and x = y = 0 for t < 1).

18 To obtain the expression for x(t), find g(t) by inverting $\bar{g}(p)$ and then write down the convolution f * g. For the final part, substitute $f(\tau) = \delta(\tau)$ into the convolution.

Comments on or corrections to this problem sheet are very welcome and may be sent to me at reh10@damtp.cam.ac.uk.