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Hints and Solutions for Example Sheet 4:

Complex Analysis, Contour Integration and Transform Theory

1 The imaginary parts are cos x sinh y, −ey2−x2
sin 2xy and −y/(x2 + y2) respectively

(ignoring arbitrary constants). Hence the complex functions are sin z, exp(−z2) and
1/z.

2 Define Φ(x, y) = −E Re(z−a2/z) where z = x+ iy. Note that ∇2Φ = 0. Write z = reiθ,
and hence show that Φ = 0 on r = a. Find also an approximate expression for Φ as
r →∞ and deduce that at large distances, −∇Φ has magnitude E in the x-direction.

3 log tanh z is analytic except when tanh z is real and negative: show that this does not
occur in the domain. For the bar of width L, the temperature is
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.

4 (z − i)2/(z + 1) has a double zero at z = i and a simple pole at z = −1.

(1 + z)−1 − (1− z)−1 has a simple zero at z = 0 and simple poles at z = ±1.

(z2 + i)−1 has no zeros but simple poles at z = ±e−πi/4.

sec2 πz also has no zeros but double poles at z = n + 1
2 (where n is any integer).

sin z−2 has simple zeros at z = ±1/
√

nπ for positive integers n, and a (non-isolated)
essential singularity at z = 0.

sinh{z/(z2 − 1)} has simple zeros at z = 0 and at

z = − i

2nπ
±

√
1− 1

4n2π2

(from solving z/(z2− 1) = nπi) for any non-zero integer n. It has essential singularities
at z = ±1 (its growth is exponentially fast near each of the singularities).

(tanh z)/z has zeros at z = mπi for non-zero integers m, simple poles at z = (n + 1
2 )πi

for integers n, and a removable singularity at z = 0.

5 Part (i) was proved in lectures, and parts (ii)–(iv) follow from it. For part (v), write
down the Laurent expansion of f and substitute it into the given formula.



6 (z + 1)/z2 has a double pole at z = 0 with residue 1; e−z/z3 has a pole of order 3 at
z = 0 with residue 1

2 ; and sin2 z/z5 has a pole of order 3 at z = 0 with residue − 1
3 (use

the Taylor expansion of sin). There are simple poles of cot z at z = nπ (n an integer),
with residue 1 at each pole (use part (iv) of the previous question). Finally, z2/(1+z2)2

has double poles at z = ±i, with residues ∓ 1
4 i (use part (v) of the previous question).

7 There are infinitely many possibilities; some are shown below. The values of the function
on either side of the cuts are marked (x = Re z, y = Im z).



8 Most of this question has been done in lectures. For the final equation, apply Cauchy’s
formula to the function f ′(z).

9 Use Cauchy’s formula differentiated n times with respect to z0; and find a bound for
the integral round the circle. To prove Liouville’s Theorem, set n = 1 and observe that
the formula is true for all r; and also for all z0.

10 Proceed as for the trigonometric functions worked example in lectures. There is a pole
inside the contour at z = a−1 with residue (an−1−an+1)−1. The answer is 2π/an(a2−1).

11 Proceed as for the Fourier transform worked example in lectures; take the real part to
obtain the given equality. The general result, valid for both positive and negative k, is
πe−|k|, because it must be an even function of k.

12 (i) Use a keyhole contour, as in the branch cut worked example in lectures.

(ii) Proceed as for the trigonometric functions worked example in lectures. Note that
the upper limit of the integral is only π, not 2π, but that you can double it up.
You should obtain a fourth-degree polynomial on the denominator; this must have
roots when sin θ = ±ia (why?). Find these roots and show that two are inside the
unit circle. [A better (quicker) method is to first replace sin2 θ by 1

2 (1−cos φ) where
φ = 2θ; then the polynomial on the denominator is only quadratic.]

(iii) If you use a semicircular contour, then there are four poles within the contour.
At any of these poles (say z0), the residue is 1/8z3

0 (using L’Hôpital’s Rule). The
sum of the residues is 1

4 i(sin π
8 − sin 3π

8 ), and (believe it or not) each sin can be
expressed in terms of the square root which appears in the answer. If instead you
use the suggested approach of a contour which forms a sector of a circle, only one
pole is enclosed and the answer is considerably easier to obtain.

(iv) Integrate exp( 1
2 iaz2) round a sector of a circle of angle π/4. One of the three

resulting integrals can be expressed as a standard real integral, for which you
know the answer. It is difficult to prove that the integral round the large circular
arc vanishes in the limit; to do it formally you would need to use the method used
to prove Jordan’s Lemma.

(v) Proceed as for the worked example in lectures with a singular point on the axis.
You will need to define a branch cut for log z, which can be taken either along
the positive real axis or along the negative imaginary axis (say); in either case the
value of log z on the positive real axis is simply log x. The contribution from the
negative real axis has three parts; one is the same as the contribution from the
positive real axis, one is purely imaginary (and so can be removed by taking real
parts) and one is a standard integral.



13 Proceed as for the Fourier transform worked example in lectures. The required function
is

1
2e−|x|/

√
2 sin

(
π

4
+
|x|√

2

)
.

14 Integrate
∮

sech z dz around the given countour. The real axis gives you 2I where I is the
required integral. When z = iπ +x, show that sech z = − sech x, so that the upper side
of the rectangular contour gives 2I as well. The two vertical sides of the rectangle give
zero as R →∞, which you can demonstrate by showing that |cosh(R + iy)| > sinhR.

The only singularity of the integrand within the contour is at z = iπ/2, where it has a
simple pole with residue −i. The result follows.

15 (i) (p−α)−1; n!/pn+1; p/(p2−α2); 2αp/(p2 +α2)2; e2(1−p)/(p− 1);
(e−ap − e−bp)/p.

(ii) For the penultimate inversion, take care over in which direction you close the
inversion contour. For the final inversion, split it into two parts and invert each
separately.

16 (i) Use partial fractions before inverting. The answer is x = 3t + 2 sin 2t.

(ii) You should obtain a first order differential equation for x̄(p), which you can solve
using an integrating factor to obtain x̄(p) = p−2 + cep2/2, where c is an arbitrary
constant. Evaluate c by considering the limit of px̄(p) as p → ∞. The answer is
x = t.

17 Find f̄(p) (you should obtain (p + 1)−1e−p−1). Take the Laplace transform of each
equation and solve the resulting linear simultaneous equations to obtain

x̄ =
p + 5

(p + 1)(p + 2)(p + 4)
e−p−1,

ȳ =
3

(p + 1)(p + 2)(p + 4)
e−p−1.

Use partial fractions before inverting to obtain the solution

x = 4
3e−t − 3

2e1−2t + 1
6e3−4t,

y = e−t − 3
2e1−2t + 1

2e3−4t

for t > 1 (and x = y = 0 for t < 1).

18 To obtain the expression for x(t), find g(t) by inverting ḡ(p) and then write down the
convolution f ∗ g. For the final part, substitute f(τ) = δ(τ) into the convolution.

Comments on or corrections to this problem sheet are very welcome and may be sent to
me at reh10@damtp.cam.ac.uk.


