Summary of Results from Chapter 4: Complex Analysis

Analyticity

A function f(z) is differentiable at z if the limit

$$f'(z) = \lim_{\delta z \to 0} \frac{f(z + \delta z) - f(z)}{\delta z}$$

exists and is independent of the direction taken by δz in the limiting process.

A function f(z) is analytic (or regular) in a region $R \subseteq \mathbb{C}$ if f'(z) exists and is continuous for all $z \in R$. It is analytic at a point z_0 if it is analytic in some neighbourhood of z_0 , i.e., in some region enclosing z_0 .

f(z) is differentiable at z_0 if and only if the Cauchy–Riemann equations

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \qquad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

hold at z_0 , where

$$u(x,y) = \operatorname{Re} f(x+iy)$$
 and $v(x,y) = \operatorname{Im} f(x+iy).$

The functions u and v are harmonic, i.e., satisfy Laplace's equation in two dimensions.

Laurent Expansions

If f(z) is analytic in some annulus centred at z_0 then there exist complex constants a_n such that

$$f(z) = \sum_{n = -\infty}^{\infty} a_n (z - z_0)^n$$

within the annulus.

An isolated singularity of a function f(z) is a point z_0 at which f is singular, but where otherwise f is analytic within some neighbourhood of z_0 . A Laurent expansion of falways exists about an isolated singularity.

If there are non-zero a_n for arbitrarily large negative n then f has an essential isolated singularity at z_0 .

If $a_n = 0$ for all n < -N, but $a_{-N} \neq 0$, where N is a positive integer, then f has a pole of order N at z_0 .

If $a_n = 0$ for all n < 0 then f has a removable singularity at z_0 .

Residues

If f(z) has an isolated singularity at z_0 , then its residue there is given by the coefficient a_{-1} in the Laurent expansion.

If f(z) has a pole of order N at z_0 , then

$$\operatorname{res}_{z=z_0} f(z) = \lim_{z \to z_0} \left\{ \frac{1}{(N-1)!} \frac{\mathrm{d}^{N-1}}{\mathrm{d}z^{N-1}} \left((z-z_0)^N f(z) \right) \right\}.$$

In particular, if f(z) has a simple pole at z_0 then

$$\operatorname{res}_{z=z_0} f(z) = \lim_{z \to z_0} \{ (z - z_0) f(z) \}.$$

The residue of f(z) at infinity is defined to be equal to the residue of $f(1/\zeta)$ at $\zeta = 0$.

Branch Points

A branch point of a function is a point which it is impossible to encircle with a curve upon which the function is continuous and single-valued. The function has a branch point singularity there.

Branch Cuts

The canonical branch cut for both $\log z$ and z^{α} , where α is not an integer, is along the negative real axis from 0 to $-\infty$. With this cut,

$$\log z = \log r + i\theta$$

and

$$z^{\alpha} = r^{\alpha} e^{i\alpha\theta}$$

where $z = re^{i\theta}$ and $-\pi < \theta \leq \pi$.

No curve may cross a branch cut.