Summary of Results from Chapter 3: Cartesian Tensors

Transformation Law

If a tensor of rank n has components $T_{ijk...}$ measured in a frame with orthonormal Cartesian axes $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ then its components in a frame with axes $\{\mathbf{e}_1', \mathbf{e}_2', \mathbf{e}_3'\}$ are given by

$$T'_{ijk...} = l_{ip}l_{jq}l_{kr}\dots T_{pqr...}$$

where the rotation matrix $L = (l_{ij})$ is defined by

$$l_{ij} = \mathbf{e}'_i \cdot \mathbf{e}_j$$
.

The components of L satisfy $l_{ik}l_{jk} = \delta_{ij}$ and $l_{ki}l_{kj} = \delta_{ij}$.

The Kronecker Delta and the Alternating Tensor

$$\delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

$$\epsilon_{ijk} = \begin{cases} +1 & \text{if } (i,j,k) \text{ is a cyclic permutation of } (1,2,3) \\ -1 & \text{if } (i,j,k) \text{ is an anticyclic permutation of } (1,2,3) \\ 0 & \text{if any two of } (i,j,k) \text{ are equal} \end{cases}$$

$$\epsilon_{ijk}\epsilon_{klm} = \delta_{il}\delta_{jm} - \delta_{im}\delta_{jl}$$

$$[\mathbf{x} \times \mathbf{y}]_i = \epsilon_{ijk}x_jy_k$$

$$\det A = \epsilon_{ijk}a_{1i}a_{2j}a_{3k}$$

Symmetric and Anti-Symmetric Tensors

A tensor $T_{ijk...}$ is symmetric in i, j if $T_{ijk...} = T_{jik...}$ and anti-symmetric in i, j if $T_{ijk...} = -T_{jik...}$.

Any second rank tensor T can be decomposed into a symmetric part S and an anti-symmetric part A where

$$S_{ij} = \frac{1}{2}(T_{ij} + T_{ji}),$$

 $A_{ij} = \frac{1}{2}(T_{ij} - T_{ji})$

and

$$T_{ij} = S_{ij} + A_{ij}.$$

Any anti-symmetric second rank tensor A can be expressed in terms of a suitable vector $\boldsymbol{\omega}$ such that $A_{ij} = \epsilon_{ijk}\omega_k$. (In fact, $\omega_k = \frac{1}{2}\epsilon_{klm}A_{lm}$.)

Diagonalisation of Symmetric Second Rank Tensors

If T is a symmetric second rank tensor with eigenvalues (principal values) λ_1 , λ_2 and λ_3 and corresponding unit eigenvectors (principal axes) \mathbf{e}'_1 , \mathbf{e}'_2 and \mathbf{e}'_3 , then the components of T in a frame whose axes coincide with the principal axes are

$$\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix}.$$

Isotropic Tensors

The most general isotropic tensors are:

Rank 0: Any scalar

Rank 1: Only the zero vector

Rank 2: $\lambda \delta_{ij}$

Rank 3: $\lambda \epsilon_{ijk}$

Rank 4: $\lambda \delta_{ij} \delta_{kl} + \mu \delta_{ik} \delta_{jl} + \nu \delta_{il} \delta_{jk}$

Differential Operators

 $\partial_i = \partial/\partial x_i$ is a tensor differential operator of rank one.

$$[\nabla \Phi]_i = \frac{\partial \Phi}{\partial x_i}$$

$$\nabla \cdot \mathbf{F} = \frac{\partial F_i}{\partial x_i}$$

$$[\nabla \times \mathbf{F}]_i = \epsilon_{ijk} \frac{\partial F_k}{\partial x_j}$$

$$\nabla^2 \Phi = \frac{\partial^2 \Phi}{\partial x_i \partial x_i}$$

$$[\nabla^2 \mathbf{F}]_i = \nabla^2 (F_i) = \frac{\partial^2 F_i}{\partial x_i \partial x_j}$$