
4. Rotation Curves

Gas and young stars will move on nearly closed orbits, and if the underlying potential
is axisymmetric these will be nearly circular. So if you measure the bulk velocity v
(of gas or young stars, not old stars) at any place on a galactic disc, you’ve measured
R (∂Φ/∂R); and if you measure v(R)—the ‘rotation curve’—you have information on
the mass distribution.

When people first starting measuring rotation curves (c. 1970), it quickly became
clear that the mass in disc galaxies doesn’t follow the visible disc. Disc galaxies gener-
ically have rotation curves that are fairly flat to as far out as they can be measured
(several scale radii). The simplest interpretation of a flat rotation curve is that enclosed
mass M(r) ∝ r, or ρ(r) ∝ 1/r2, a ‘dark halo’. The deep picture of M104 in part 1 of
these notes suggests that dark halos are not entirely dark, but as yet nobody knows
really knows how far they extend. And there is no good estimate of the total mass of
any disc galaxy. This is what makes disc rotation curves very important.

However, one needs to be a little careful about interpreting flat rotation curves.
The maximum contribution to the rotation curve from an e−R/R0 disc is not (as we
might naively expect) around R0 but around 2.5R0. Adding the effect of a bulge can
easily give a fairly flat rotation curve to 4R0 without a dark halo. To be confident
about the dark halo, one needs to have the rotation curve for ∼> 5R0. In practice,
that means H I measurements; optical rotation curves don’t go out far enough to say
anything about dark halos.

The rest of part 4 is a more detailed working out of the previous paragraph. It
follows an elegant derivation and explanation due to A.J. Kalnajs.

The potential from a disc with surface density Σ(R) is

Φ(R) = −G
∫ ∞

0

R′Σ(R′) dR′
∫ 2π

0

dφ√
R2 +R′2 − 2RR′ cosφ

. (4.1)

To make this tractable, let us first define1
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+ . . . (u < 1). (4.2)

Then

Φ(R) = −2πG
∫ R
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dR′ − 2πG
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and hence
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= 2πG
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(4.4)

1 If you really want to know where that came from, look up any musty old celestial mechanics book
under ‘Laplace coefficients’.
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(Here L′ means a derivative!) The important thing to take away with you is not the
algebraic mess but the form of the relation, which is

v2(R) = 2πG
∫ ∞

0

K

(
R

R′

)
Σ(R′) dR′. (4.5)

Changing variables to
x = lnR, y = lnR′,

we can write this as a convolution

v2(R) = 2πG
∫ ∞
−∞

K(ex−y)R′Σ(R′) dy. (4.6)

The kernel K(R/R′) is in Figure 4.1.

Figure 4.1: The kernel K(R/R′). Observe that the R > R′ part tends to have higher
absolute value than the R < R′ part.

Figure 4.2: The dashed curve is RΣ(R) for an exponential disc with Σ ∝ e−R and the
solid curve is v2(R). Note that R is measured in disc scale lengths, but the vertical scales are
arbitrary.

Figure 4.2 shows RΣ(R) and v2 for an exponential disc, but the general shapes
aren’t very sensitive to whether Σ(R) is precisely exponential. The important qualita-
tive fact is that whatever RΣ(R) does, v2 does roughly the same, but expanded by a
factor of ' e.

The distinctive shape of the v2(lnR) curve for realistic discs makes it very easy to
recognize non-disc mass. Figure 4.3, following Kalnajs, shows the rotation curves you
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get by adding either a bulge or a dark halo. (Actually this figure fakes the bulge/halo
contribution by adding a smaller/larger disc; but if you properly add spherical mass dis-
tributions for disc/halo, the result is very similar.) Kalnajs’ point is that a bulge+disc
rotation curve has a similar shape to a disc+halo rotation curve—only the scale is dif-
ferent. So when examining a flat(-ish) rotation curve, you must ask what the disc scale
radius is.

Figure 4.3: Plots of v2 against lnR (upper panel) or v against R (lower panel) For one
curve in each panel, a second exponential disc with mass and scale radius both scaled down
by e2 ' 7.39 has been added (to mimic a bulge); for the other curve a second exponential
disc with mass and scale radius both scaled up by e2 ' 7.39 has been added (to mimic a dark
halo).

Problem 4.1: Express the integral equation (4.3) relating Φ(R) and Σ(R) as a convolution
in lnR. [10]

The convolution kernel differs from K(R/R′) of course, and in a particularly interesting
way in the R/R′ � 1 limit. Can you explain this difference using a physical argument? [10]



5. Gravitational Lensing

Gravitational lensing is about how the appearance of distant bright objects is altered
by the gravity of foreground mass. Being a purely gravitational effect makes lensing
astrophysically important as a probe of dark matter.

This part is more detailed than it needs to be. Only the section on microlensing
in the Milky Way is really syllabus material. The rest you should consider as relevant
background material plus general interest.

Photons are affected by a gravitational field, but not in the same way as massive
particles are. For the details we need general relativity, but fortunately, for astrophysical
applications we only need to take over a few simple results. The most important is that
if a light ray passes by a mass M with impact parameter R (� GM/c2 and � the size
of the mass), it gets deflected by an angular amount

α =
4GM
c2R

. (5.1)

In contrast, a massive body at high speed v gets deflected by α = 2GM/(v2R).

The lensing equation

To make (5.1) useful we need two approximations, both very good in almost all astro-
physical situations:
(i) The deflector is much smaller than the distances to the observer and the object

being viewed (the ‘source’);
(ii) The deflections are always very small, so we can freely use sinα = α, and also we

can get the total deflection from a mass distribution by integrating (5.1).
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Figure 5.1: Definitions of DL, DS, DLS, θ, θS, and α.
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Accordingly, let us consider a situation as in Figure 5.1: observer is viewing a
source at distance DS, with a lens (a mass screen) intervening at distance DL; DLS is
the distance from lens to the source.1 We’ll use angular coordinates for the transverse
position.2 Thus, θS is the position of the source, θ is its observed position after being
deflected—note that these are two-dimensional angles. Let Σ(θ) be the lens’s density
surface mass density (as in solar masses per steradian). Let α(θ) be the deflection
angle. Then, comparing vectors in the source plane, we get

DSθ = DSθS +DLSα. (5.2)

(By convention,3 α is directed outwards from the deflecting mass rather than towards
it.) Using (5.1) to get α in terms of Σ, we get

θ = θS +
DLS

DS
α(θ), α(θ) =

4G
c2DL

∫
Σ(θ′)(θ − θ′) d2θ′

|θ − θ′|2
. (5.3)

This is known as the lens equation. It gives θS as an explicit function of θ, but θ as an
implicit function of θS. Moreover, θ(θS) need not be single-valued, so sources can be
multiply imaged.

The arrival time surface

It’s possible to work entirely with the form (5.3), but there’s a much more intuitive
reformulation, which we’ll now derive.

We start by noting that the lens equation (5.3) amounts to equating a gradient to
zero:

∇T = 0, T = 1
2T0(θ − θS)2 −Ψ(θ),

Ψ(θ) =
4G
c3

∫
Σ(θ′) ln |θ − θ′| d2θ′, T0 =

DLDS

cDLS
.

(5.4)

The two terms in T express the change in light travel time for an arbitrary deflection:4

the first term is what we would get from geometrical considerations alone; the second
term is an extra time delay caused by the gravitational field.5 The requirement that T
be stationary is just Fermat’s principle.

Next we consider a point mass M , which happens to be precisely between us and
a point source. In other words θS = 0 and Σ(θ) = Mδ(θ). Then the lens equation is
solved by θ = θE, with

θ2
E =

4GM
c2

DLS

DLDS
, R2

E =
4GM
c2

DLDLS

DS
. (5.5)

Here RE is just the non-angular form of θE—it is called the Einstein radius. The image
will consist of a ring of angular radius θE, called the Einstein ring.

1 On galactic scales DL, DS, DLS are ordinary distances, but on cosmological scales they must be
understood as angular diameter distances, and DS 6= DL + DLS. The reason for this complication is
that the universe will have expanded substantially over the light travel time.

2 Later on, we’ll use θr, θx, θy as coordinates rather than r, x, y, to remind us that these are angles
on the sky, not distances.

3 The astrophysical convention being that you first think how a rational person would do it, and
then you change the sign.

4 In cosmology both terms need to be multiplied by (1 + zL).
5 The gravitational time delay can be derived directly from general relativity, independently of

(5.1), and is known as the Shapiro time delay. Radio astronomers can measure it directly.
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Problem 5.1: For very distant sources (i.e., DS � DL) we can write

θE = (. . .)×
√
M/DL.

Find (. . .) in arcsec, if M is measured in solar masses and DL in parsecs. [4]

By a Gauss’s-law type argument, for any circular mass distribution Σ(θr), Ψ(θr) and
α(θ) will be influenced only by interior mass. So we’ll get the same images for any
circular distribution of the mass M , provided it fits within an Einstein radius. Bodies
that fit within their own Einstein radius are said to be ‘compact’. But the Einstein
radius depends on where the source and observer are:

RE ∼ (Schwarzschild radius×DL)
1
2 .

This sort of means that the further away you look, the easier it gets to see examples of
gravitational lensing. It’s a surprising fact at first, but it’s really just the gravitational
analogue of a familiar fact about glass lenses—to get the maximum effect from a lens
you have to be near the focal plane, if you’re too near the lens doesn’t have much effect.

For given DL, DS, to get a compact object you have to pack a mass (in projection)
into a circle of radius θE; but the area of the circle is proportional to the mass. So
clearly there has to be a critical density, say Σcrit, such that if Σ ≥ Σcrit somewhere
then there is a compact (sub)-object. Working out the algebra we easily get

Σcrit =
DLDS

DLS

c2

4πG
. (5.6)

Using this we can write (5.4) more concisely as

∇T = 0, T = T0

[
1
2 (θ − θS)2 − ψ(θ)

]
ψ(θ) =

1
π

∫
κ(θ′) ln |θ − θ′| d2θ′,

(5.7)

where κ is the projected mass density in units of the critical density. From the second
line of 5.7 it should be evident that ψ satisfies a two-dimensional Poisson equation

∇2ψ = 2κ. (5.8)

The fact there is a critical density, and that it depends on distances, has important
astrophysical consequences. For example, a galaxy as a whole (a smooth distribution
of ∼ 1012M� on a scale of ∼ 105 pc) is not compact to lensing for DL ∼< 109 pc—
cosmological distances. But clumps within the galaxy may be compact at much smaller
distances. In particular, a star is compact to lensing at distances of even ∼< 1 pc.

The surface T (θ) is known as the time delay surface or the arrival time surface.
Wherever the arrival time is stationary (i.e., the surface as a maximum, minimum,
or saddle point) there’ll be constructive interference, and an image. This is Fermat’s
principle. Furthermore, the less the curvature of the surface at the images, the more
magnified the image will be. We’ll formalize this in the next section.

Try to visualize the arrival time surface. The geometrical part is a parabola with
a minimum at θS. Having mass in the lens pushes up the surface variously. If κ(θ) > 1
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anywhere, there will be a maximum somewhere near there, hence another image. There
must be a third image too, because to have a minimum and a maximum in a surface
you must have a saddle point somewhere. In fact

maxima + minima = saddle points + 1. (5.9)

This is a really a statement about geometry that should be intuitively clear, though a
formal proof is difficult.

A good way of gaining some intuition about the arrival time surface is to take
a transparency with a blank piece of paper behind it and look at the reflections of a
light bulb. Notice how images merge and split, and how you get grotesquely stretched
images just as they do. Deep images of rich clusters of galaxies show just these effects!

Magnification

By magnification we mean: how much does the image move when we move the source?
It should be clear that this magnification can’t be a scalar, because an image doesn’t in
general move in the same direction as the source. In fact the magnification is a tensor.
We’ll denote it by M (A for ‘amplification’ is also used). Formalizing our definition, we
have

M−1 =
∂θS

∂θ
=

∂2

∂θ2
T (θ). (5.10)

In cartesian coordinates

M−1 =

 1− ∂2ψ

∂θ2
x

∂2ψ

∂θxθy
∂2ψ

∂θyθx
1− ∂2ψ

∂θ2
y

. (5.11)

Notice that M−1 is basically taking the curvature of the arrival time surface.
It is helpful to write M−1 in terms of its eigenvalues, and the usual form is like

M−1 = (1− κ)
(

1 0
0 1

)
− γ

(
cos 2φ sin 2φ
sin 2φ − cos 2φ

)
. (5.12)

The eigenvalues are of course 1− κ± γ. The first term in (5.12) is the trace part—and
comparing equations (5.11) and (5.8) shows that it must be κ—while the second term is
traceless. The κ thing produces an isotropic expansion or contraction, while the γ thing
produces a stretching in the φ direction and a shrinking in the perpendicular direction;
κ is known as ‘convergence’ and γ as ‘shear’.

The determinant of M can be thought of as a scalar magnification.

|M | = [(1− κ)2 + γ2]−1. (5.13)

The places where one of the eigenvalues of M−1 becomes zero (and in consequence
|M | is infinite) are in general curves and are known as critical curves. When critical
curves are mapped onto the source plane through the lens equation, they give caustics;
a source lying on a caustic gets infinitely magnified.
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Example [Point mass and isothermal lenses] For a point mass, the lens equation is

θSx = θx −
θx

θ2
r
θ2
E, θSy = θy −

θy

θ2
r
θ2
E,

and this gives

M−1 =

 1−
(

1

θ2
r

+ 2
θ2
x

θ4
r

)
θ2
E 2

θxθy

θ4
r
θ2
E

2
θxθy

θ4
r
θ2
E 1−

(
1

θ2
r

+ 2
θ2
y

θ4
r

)
θ2
E

.
Taking the determinant and simplifying, we get

|M |−1 = 1−
θ4
E

θ4
r
. (5.14)

For a circular mass distribution Σ ∝ θ−1
r (known as the ‘isothermal lens’, because it is

just the ρ ∝ 1/r2 isothermal sphere in projection) the lens equation is

θSx = θx −
θx
θr
θ2
E, θSy = θy −

θy
θr
θ2
E,

and gives

M−1 =

 1−
(

1

θr
+
θ2
x

θ3
r

)
θ2
E

θxθy

θ3
r
θ2
E

θxθy

θ3
r
θ2
E 1−

(
1

θr
+
θ2
y

θ3
r

)
θ2
E

.
And from this we get

|M |−1 = 1− θE
θr
. (5.15)

It’s shorter in polar coordinates, but tensor components in polar coordinates can get
confusing. tu

Magnification in lensing conserves surface brightness. We can prove this in a rather fun
way. Let us consider the axial direction as a formal time variable t; then light rays can
be thought of as trajectories. Now allow observers to be at arbitrary transverse position
(say w—two dimensional) and arbitrary t. Then θ as observed at (w, t) is just the local
dw/dt for the corresponding light ray, up to a constant factor. This means we can make
a formal analogy with Hamiltonian formulation of stellar dynamics, with θ (up to a
constant) playing the role of the momentum, w playing the role of the coordinates, and
ψ(w, t) replacing the Newtonian potential. The phase space density f is the density of
photons in (w,θ) space, or the number of photons per unit solid angle on the sky per
unit telescope area, i.e., the surface brightness. The collisionless Boltzmann equation
applies (as it does for any Hamiltonian system) and it tells us that surface brightness is
conserved along trajectories! Surface brightness must be conserved by the act of placing
the lens there too—think of surface brightness before and after going through the lens.
QED. We must be careful, though, to understand ‘along the trajectories’ correctly. It
means we must always be looking at photons from the same source, so if the image is
moved in the sky by lensing we must follow it when we measure surface brightness.

In other words, lensing changes the apparent sizes (and shapes) of objects, but
without altering their surface brightness.
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Problem 5.2: For unresolved sources, we don’t observe the surface brightness but only the
luminosity, say L. In a survey of objects with luminosity function f(L) to a limit of Lmin, the
number of objects detected will be∫ ∞

Lmin

f(L) dL× 〈area of survey〉 .

Now suppose there is a foreground lens in the survey area with uniform scalar magnification
|M |. This will increase the effective luminosity limit of the survey to Lmin/|M |, and hence
change the number of objects detected. The changed number of objects is not, however,∫ ∞

Lmin/|M |
f(L) dL× 〈area of survey〉 .

Correct this formula. [10]

This effect is known as ‘amplification bias’.

That’s more than enough theory, let’s discuss real systems a little.

Multiple-image QSOs

These happen when a foreground galaxy is within ∼< θE (in projection) of a QSO, and
produces two or four images with arcsecond order separations. Two-image systems
have a minimum and a saddle point, while four-image systems have two minima and
two saddle points. In both cases there’s a maximum too, at the bottom of the galaxy’s
potential well; but since that is also generally the densest part of the galaxy, κ is very
high and |M | nearly vanishes, so these central images are too faint to detect.

Multiple-image QSOs are of great astrophysical interest, and two things make them
so.

The first is that since QSOs are often very time-variable and the different images
have different arrival times, the images will show the same time-variability, but with
offsets. These offsets are simply the differences in T (θ) between different images. (So far
they have been explicitly measured for two lenses.) Provided we know (or can model)
κ(θ), the measured time offsets tell us T0, and hence H0. Basically it’s this: normally
we can only measure dimensionless things (image separations, relative magnifications)
in lenses systems; but if we succeed in measuring a quantity that has a scale (the time
delays) that tells us the scale of the universe (H0). In practice, there is considerable
uncertainty about the distribution of mass in the lensing galaxies, and this translates
into an uncertainty in the inferred H0 that is much larger than errors in the time delays.
Maybe this problem can be overcome, maybe not. . .

The second thing has to do with the extremely small size of QSOs in optical
continuum. Now the κ(θ) of a galaxy isn’t perfectly smooth, it becomes granular on
the scale of individual stars. This produces a very complicated network of critical lines
(in the lens plane), and a corresponding complicated network of caustics in the source
plane (like the pattern at the bottom of a swimming pool). The optical continuum
emitting regions of QSOs are small enough to fit between the caustics, but the line
emitting regions straddle several caustics. As proper motions move the caustic network,
the continuum region will sometimes cross a caustic, and show a sudden change in
brightness; the time taken for the brightness to change is the time it take to cross the
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caustic. This is the phenomenon of QSO microlensing: continuum shows it but lines
don’t. (It’s just the gravitational version of stars twinkling and planets not twinkling.)
This has been observed, and modelling the caustic network and putting in plausible
values for the proper motion leads to an estimate of the intrinsic size of the continuum
regions of QSOs. It’s very small ∼ 100 AU.

Galaxy clusters

Galaxy clusters are generally not in dynamical equilibrium (there haven’t been enough
crossing times since they formed). Their mass distributions and ψ potentials are thus
warped in more complicated ways than for single galaxies. They are also much bigger
on the sky and thus have many more background objects (faint blue galaxies) to lens.

The transparency with a paper behind it and several lightbulbs overhead is a good
simulacrum of lensing by a cluster. Rich clusters show many highly stretched images
of background galaxies, and these are known as arcs. A deep HST image of Abell 2218
shows over a hundred arcs, including seven multiple image systems.

An arc is close to a zero eigenvalue ofM−1, and is stretched along the corresponding
eigenvalue. Thus each arc provides some sort of constraint on the ψ of the cluster.

Clusters also show weak lensing. That’s when the eigenvalues 1 − κ ± γ are too
close to unity to show up as arcs, but if many galaxies in the same region are examined
then statistically a stretching is measurable. The statistical stretching measures the
ratio of the two eigenvalues, and thus γ/(1− κ).

Several groups have been reconstructing cluster mass profiles from information
provided by multiple-images, arcs, and weak lensing.

Microlensing in the Milky Way

One possibility for the dark matter in the Milky Way halo is that it consists of brown
dwarfs, compact objects below the hydrogen burning threshold of 0.08M�. Such objects
would act as point lenses. A point lens has two images, at

θ = 1
2

(
θS ±

√
θ2

S + 4θ2
E

)
. (5.16)

(There is formally a third image at θ = 0, i.e., at the lens itself, but for a point mass
this image has zero magnification.) The image separation for a ∼M0 lens at distances
of ∼ 10, kpc is < 1 mas, far too small to resolve. What will be observed is a brightening
equal to the combined magnification of both images. Using the result 5.14 for |M | for
a point lens, and adding the absolute values of |M | at the two image positions, we get

Mtot =
u2 + 2

u(u2 + 4)
1
2
, u =

θS

θE
. (5.17)

Now because of stellar motions, θS will change by an amount θE over times of order a
month, so microlensing in the Milky Way can be observed by monitoring light curves.
If the background source star has impact parameter b and velocity v (projected onto
the lens place) with respect to the lens, then

u =
(b2 + v2t2)

1
2

DLθE
. (5.18)
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Figure 5.2: Light curves for impact parameters of RE (lowest), 0.5RE and 0.2RE. The unit
of time is how long it takes the source to move a distance RE.

Inserting (5.18) into (5.17) gives us Mtot(0), i.e., the light curve, plotted for three
different b in Figure 5.2. The height of a measured light curve immediately gives RE/b,
and the width gives RE/v.

Though trying to resolve the images images in microlensing seems hopeless with
foreseeable technology, there are some prospects for tracking the moving double image
indirectly. By combining the positions and magnifications of the two images, we have
for the centroid

θcen =
u(3 + u2)

2 + u2
θE. (5.19)

Such microlensing events are rare, because θS has to be ∼< θE for significant mag-
nification. People speak of an optical depth τ to microlensing in a field. This is the
probability of a star being (in projection) within θE of a foreground lens, at any given
time. From equation (5.18) it amounts to the probability of Mtot ≥ 2/

√
5 = 1.34. It’s

just the covering factor of discs of radius θE (Einstein rings) from all lenses between
us and the stars in the field.6 The source stars might be bright stars in the Large
Magellanic Cloud (LMC) and the lenses very faint stars or brown dwarfs in the Milky
Way halo.

Using equation (5.5) for RE and considering the total area covered by the Einstein
rings of lenses at distances between DL and DL + dDL in a patch of sky, and then
integrating over DL, we have

τ =
4πG
c2DS

∫ DS

0

DLDLS ρ(DL) dDL. (5.20)

Problem 5.3: Derive the formula (5.20) for the microlensing optical depth. [10]

Imagine an observer at radius r = 1 in an isothermal sphere made of machos, look-
ing outwards (i.e., towards the anti-centre) at sources at radius r = a, and monitoring for
microlensing. Show that τ for this observer will be

τ = 2
σ2

c2

[
a+ 1

a− 1
ln a− 2

]
. [6]

[
∫ a

1
x−2(x− 1)(a− x) dx = (1 + a) ln a− 2(a− 1).]

6 So optical depth is a bit of a misnomer.
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The really nice thing about the formula (5.20) is that it doesn’t depend on the mass
distribution of the lenses, as long as each mass fits within its own Einstein radius (diffuse
gas clouds don’t count, nor does any kind of diffuse dark matter). So τ estimated from
light curve monitoring could be used to make inferences about ρ.

How large is τ through the Galactic halo? To estimate that, we need an estimate
for ρ. Now the Milky Way rotation curve suggests an isothermal halo, ρ = σ2/(2πGr2),
with σ ∼ 200 km/sec. If we then say that r will be of order the D factors in (5.20), we
get

τ ∼ σ2

c2
, or τ ∼ 10−7 to 10−6. (5.21)

So to have any hope of detecting such microlensing events, it is necessary to monitor
the light curves of millions of stars. Four such surveys have been started up in the
last two years, observing fields in the LMC and/or the Milky Way bulge. (The bulge
surveys don’t go through the halo of course, but through part of the Milky Way disc.)7

The current estimates for τ are ∼ 10−7 towards the LMC and ' 3× 10−6 towards the
bulge. How much of the lensing mass is in brown dwarfs as distinct from faint stars,
and whether the lensing mass alone can account for rotation curve data are not yet
clear. Meanwhile, the huge number of variable stars discovered by these surveys are
revolutionizing that field of study.

7 An estimate of τ from a survey will include a correction for the detection efficiency. Surveys
have to be very wary of spurious detections; hence any light curve possibly contaminated by stellar
variability has to be discarded for microlensing purposes. Detection efficiencies are of order 30%.


