
10 Stellar Dynamics

Orbits

The trajectories of individual stars (sometimes just called orbits) is in general highly
chaotic. This can be so even if there is no collective motion at all (f in equilibrium).
Actually, it’s not difficult to appreciate why. Think about making bread, the baker’s
dough being a sort of fluid. Dough is incompressible, but that doesn’t prevent you
stretching it in one direction and shrinking it in others, and then folding it back. So
while the dough keeps much the same shape, initially nearby particles within it can be
dispersed to widely different parts of it, through the repeated stretching and folding.
The same stretching and folding operation can take place in phase space. In fact it
appears that phase space is typically riddled with regions where f gets stretched in one
directions while being shrunk in others. Thus nearby orbits tend to diverge, and the
divergence is exponential in time, which is the technical definition of chaos in dynamical
systems. Simulations suggest that the e-folding time of the divergence is comparable
to Tcross, and gets shorter the more particles there are.

In some special situations, there is no chaos, and the system is said to be ‘inte-
grable’. If the dynamics is confined to one real-space dimension (hence two phase-space
dimensions) then no stretching-and-folding can happen, and orbits are regular. So in a
spherical system all orbits are regular. In addition, there are certain potentials (usually
referred to as Stäckel potentials) where the dynamics decouples into three effectively
one-dimensional systems; so if some equilibrium f generates a Stäckel potential, the
orbits will stay chaos-free. Also, small perturbations of non-chaotic systems tend to
produce only small regions of chaos,2 and orbits may be well described through pertur-
bation theory.

In integrable systems there are significant simplifications. Each orbit is (i) confined
to a three-dimensional toroidal subspace of six-dimensional phase space, and (ii) fills
its torus evenly.3 Phase space itself is filled by nested orbit-carrying tori—they have to
be nested, since orbits can’t cross in phase space. Therefore the time-average of each
orbit is completely specified once we have specified which torus it is on; this takes three
numbers for each orbit, and these are called ‘isolating integrals’—they are constants
for each orbit of course. Think of the isolating integrals as a coordinate system that
parametrizes orbital tori; transformations to a different set of isolating integrals is like
a coordinate transformation.

If isolating integrals exist, then any f that depends only on them will automati-
cally satisfy the collisionless Boltzmann equation. Conversely, since orbits fill their tori
evenly, any equilibrium f cannot depend on location on the tori, it can only depend
on the tori themselves, i.e., on the isolating integrals. This result is known as Jeans’
theorem.

You should be wary of Jeans’ theorem, especially when people tacitly assume it,
because as we saw, it assumes that the system is integrable, which is in general not the
case.

2 If you ever come across the ‘KAM theorem’, that’s basically it.

3 These two statements are important results from Hamiltonian dynamical systems which we won’t
try to prove here. But the statements that follow in this section are straightforward consequences of
(i) and (ii).
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Spherical systems

In spherical systems Jeans’ theorem does apply, so f can depend on (at most) three
integrals of motion. The simplest case is for f to be a function of energy E = 1

2v
2 + Φ

only. (Since we are considering bound systems, f = 0 for E < 0 always.) To find an
equilibrium solution, we only have to satisfy Poisson’s equation.

We’ll take G = 1 for this section, to simplify the expressions a bit. Poisson’s
equation is now
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We can also replace the integral over v by an integral over E:
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In (2.20a) we take f(E) as given and try to solve for Φ and hence ρ(r); this is a nonlinear
differential equation. In (2.20b) we take Φ as given, and try to solve for f(E); this is a
linear integral equation.

There are f(E) models in the literature, and you can always concoct a new one by
picking some ρ(r), computing Φ(r) and then solving (2.20b) numerically. Note that the
velocity distribution is isotropic for any f(E). If f depends on other integrals of motion,
say angular momentum L or its z component, or both—thus f(E,L2, Lz)—then the
velocity distribution will be anisotropic, and there are many examples of these around
too.

Example [Two spherical isotropic distribution functions] The Plummer model has
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and the distribution function
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can be verified by inserting in (2.20a). Because of the simple functional forms, the Plummer
model is occasionally useful for doing rough calculations, but the r−5 density profile is much
steeper than elliptical galaxies are observed to have.

The isothermal sphere is defined by analogy with a Maxwell-Boltzmann gas, as
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and σ2 is like a temperature. Integrating over velocities gives
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)
. (2.24)

Using this, Poisson’s equation becomes
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for which the solution is

ρ(r) =
σ2

2πr2
, (2.26)

or σ2/(2πGr2) if we put back the G. The isothermal sphere has infinite mass! (A side effect
of this is that the boundary condition Φ(∞) = 0 cannot be used, which we why we needed the
redundant-looking constant ρ0 in (2.24) and (2.23).) Nevertheless, it is often used as a model,
with some large-r truncation assumed, for the dark halos of disc galaxies. tu
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The same ρ(r) can be produced by many different f , all having different velocity dis-
tributions.

The Jeans equations

Phase space quantities are hard to measure. Much more often we have information only
about averages, e.g., bulk velocities and velocity dispersions. So it is useful to derive
equations for the quantities
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∫
f d3v,
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∫
vi f d

3v,
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∫
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(2.27)

by taking moments of the collisionless Boltzmann equation (expressed in the cartesian
variables xi and vi).
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If we integrate the last term by parts (equivalently, apply the divergence theorem) and
assume that f and its derivatives vanish for large enough v, the term vanishes. In the
middle term we can take the gradient outside the integral. This gives us
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which is a continuity equation.
Now we consider the first moment∫ (
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Again, we integrate the last term by parts, and since∫
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From this we subtract 〈vi〉 times the continuity equation, and then substitute

〈vivj〉 = σij + 〈vi〉 〈vj〉 ,

to get
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which is the same as4

d 〈v〉
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ρ
∇ · (ρσ). (2.33)

Finally we have an equation that reminds us of ordinary fluid dynamics but also shows
us why a stellar fluid is different. An ordinary fluid has

d 〈v〉
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= −∇Φ− p

ρ
+ viscous terms. (2.34)

where the pressure p arises because of the high rate of molecular encounters, which also
leads to the equation of state, and p is isotropic. In a stellar fluid ∇ · (ρσ) behaves like
a pressure, but it is anisotropic. A related fact is that in the flow of an ordinary fluid
the particle paths and streamlines coincide, whereas stellar orbits and the streamlines
〈v〉 do not generally coincide.

Example [Useful forms of the hydrodynamic equation] In a steady state axisymmetric system
like a disc galaxy we use cylindrical coordinates, and then ∂/∂t = ∂/∂φ = 0. Neglecting 〈vR〉
and 〈vz〉 (which is realistic), we have
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For a steady state spherical system, we use spherical polar coordinates, so ∂/∂θ = ∂/∂φ =
0, and then neglect 〈vr〉 and 〈vθ〉. Then we have
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These forms are quite useful. Note that Φ is the total potential but ρ, 〈v〉 , 〈σ〉 could be
for any subpopulation.

As a simple test to see if this apparatus really does work, let us make a crude model of
the Milky way halo. We take Φ = v2

0 ln r, assume σ is constant and isotropic with all diagonal
components = σ2 (say). Then we say ρ ∝ r−n and

〈
vφ
〉

= 0. This gives σ = v0/
√
n. For

the Milky Way halo, ρ ∝ r−3.5, v0 as measured from gas on circular orbits is 220 km/sec, and
rotation is negligible. So we expect σ ' 120 km/sec. And it is. tu

Problem 2.3: An E0 galaxy has a total density distribution

ρtot(r) =
ρ0

1 + r2/a2
.

Show that the enclosed mass M(r) ∝ r3 for r � a and M(r) ∝ r for r � a. [3]

Now take a population of massless test particles in the potential of this galaxy. Assume
that this population is spherical, non-rotating, isothermal and isotropic, with velocity disper-
sion σ in each velocity component. What is the radial density distribution of this test particle
population? [8]

At large r the test particle distribution simplifies and its form depends on a dimensionless
number. Give a physical interpretation of this number. What is the condition that the density
distributions of the test particle population and the galaxy itself have similar forms ar large
r? [7]

4 Note that d/dt is not ∂/∂t, but
d

dt
≡

∂

∂t
+ v · ∇

sometimes called the convective derivative; also sometimes written as D/Dt to emphasize that it’s not
∂/∂t.



3. The Interstellar Medium

The interstellar medium (ISM) is a mixture of the primordial gas left over from galaxy
formation and the material spewed out by dying stars. It is only a few percent of a
galaxy’s mass, and very very diffuse (∼< 103 atoms cm−3). But it is very important
because it is the stuff that forms stars. It is also the site of varied physical processes
that make it observable and fascinate the people studying them.

Gas

Under laboratory conditions, spectral lines with low transition probabilities are ‘forbid-
den’ because the excited states get collisionally de-excited before they can radiate. In
the ISM, collisional times are typically much longer than the lifetimes of excited states
with only forbidden transitions. So forbidden lines are observable from the ISM, and in
fact they can dominate the spectrum.

Cold gas emits only in radio, and the most important ISM line of all is the 21 cm line
of atomic hydrogen (H I). It comes from the hyperfine split ground state of the hydrogen
atom (split because of the coupling of the nuclear and electron spins). The spin flip
transition itself cannot be observed in a laboratory, but the split ground state shows
up in the hyperfine splitting of the Lyman lines. H I is observed in both emission or in
absorption against a background continuum source. One of the uses of H I observations
is to measure rotation velocities of gas. Molecular hydrogen (H2) has no radio lines,
which is unfortunate, since it prevents the coldest and densest parts of the ISM being
absorbed directly. What saves the situation somewhat is that CO has strong lines at
1.3 mm and 2.6 mm from transition between rotational states, and CO gets used as a
tracer of H2.

Hot gas is readily observed in optical. An important kind of object are H II re-
gions, which partially ionized hydrogen surrounding a very hot young star or stars (O
or B). Hot stars produce a large flux of ultraviolet photons, and any Lyman contin-
uum photons(i.e., λ < 912 Å) will photoionize hydrogen. The ionized hydrogen then
recombines. But it doesn’t have to recombine into the ground state, it can recombine
into an excited state and then radiatively decay after that. This process produces a
huge variety of observable lines and continuums, of Lyman, Balmer and on through the
infrared and into radio. Of each series, the longest wavelength (or α) line will be the
strongest, because the transition rate from principal quantum number n is strongest
to n− 1. Atoms in H II regions can also be collisionally excited. Atomic hydrogen has
no levels accessible at collision energies characteristic of H II regions (T ∼ 104 K) but
N II, O II, S II, O III, Ne III all do. The [O III] lines at 4959Å and 5007Å are particularly
prominent.

A planetary nebula is like a compact H II region, except that it surrounds the
exposed core of a highly evolved star rather than a hot young star. Because of their
bright emission lines and compactness, planetary nebulae can be detected from much
greater distances than individual ordinary stars; they are used as sort of tracers of stars.

The photoionization and recombination process in H II regions and planetary neb-
ulae produces, by a happy accident, one Balmer photon for each Lyman continuum
photon from the hot star, so the UV flux can be measured by observing an optical
spectrum. The reason is basically that the gas is opaque to Lyman photons and trans-
parent to other photons, since almost the H atoms are in the ground state. A Lyman

14
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continuum photon initially from the star will get absorbed by a hydrogen atom, produc-
ing a free electron. This electron will then be captured into some bound state. If it gets
captured to the ground state we are back where we started (with a ground state atom
and a Lyman continuum photon), so consider the case where the electron is captured
to some n > 1 state. Such a capture releases a free-bound continuum photon which
then escapes, and leaves an excited state which wants to decay to n = 1. If it decays
to n = 1 bypassing n = 2, it will just produce a Lyman photon which will get almost
certainly get absorbed again. Only if it decays to some n > 1 will a photon escape. In
other words, if the decay bypasses n = 2 it almost always gets another chance to decay
to n = 2 and produce a Balmer photon that escapes. The Lyα photons produced by
the final decay from n = 2 to n = 1 random-walk through the gas as they get absorbed
and re-emitted again and again. The total Balmer photon flux thus equals the Lyman
continuum photon flux. One can then place the source star in an optical-UV colour
magnitude diagram, and determine a colour temperature which is called the Zanstra
temperature in this context.

H II regions and planetary nebulae also produce thermal continuum radiation. The
process that produces this is free-free emission: free electrons in the H II can interact
with protons without recombination, and the acceleration of the electrons in this process
produces radiation. (Electrons can interact with other electrons in similar fashion as
well, but this produces no radiation because the net electric dipole moment doesn’t
change.) The resulting spectrum is not blackbody because the gas is transparent to
free-free photons. In fact the spectrum is quite flat at radio frequencies—this is the
same thing as saying that the time scale for free-free encounters is � 1/ν for radio
frequency ν.

When an interstellar gas cloud is seen in front of a continuum source, it produces
an enormous variety of absorption lines and bands, by no means all of them well un-
derstood. Perhaps the most puzzling ones are the so-called diffuse interstellar bands
in the infrared; apparently these are similar to what you get if you take bacteria out
of the river at Cardiff and stick them in a spectrograph, which led to some interesting
speculations some years ago. . .

Example [Cold interstellar CN] Here is a really cute (and slightly poignant) example of
what interstellar absorption lines can do for you. Like most heteronuclear molecules, CN has
rotational modes which produce radio lines. The radio lines can be observed directly, but
more interesting are the optical lines that have been split because of these rotational modes.
Observations of cold CN against background stars reveal, through the relative widths of the
split optical lines, the relative populations of the rotational modes, and hence the temperature
of the CN. The temperature turns out to be 2.73 K, i.e., these cold clouds are in thermal
equilibrium with the microwave background. The temperature of interstellar space was first
estimated as ' 3 K in 1941, well before the Big Bang predictions of 1948 and later, but nobody
made the connection at the time. tu

In the highest density H II regions (∼ 108 cm−3), either very near a young star, or
in a planetary-nebula-like system near the evolved star, population inversion between
certain states becomes possible. The overpopulated excited state then decays by stim-
ulated emission, i.e., it becomes a maser. An artificial maser or laser uses a cavity
with reflecting walls to mimic an enormous system, but in an astrophysical maser the
enormous system is available for free; so an astrophysical maser is not directed per-
pendicular to some mirrors but shines in all directions. But as in an artificial maser,
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the emission is coherent (hence polarized), with very narrow lines and high intensity.
Masers from OH and H20 are known. Their high intensity and relatively small size
makes masers very useful as kinematic tracers.

Finally, we’ll just briefly mention synchrotron radiation, which you’ll cover in more
detail in the high-energy astrophysics part. It’s a broad-band non-thermal radiation
emitted by electrons gyrating relativistically in a magnetic field, and can be observed
in both optical and radio. The photons are emitted in the instantaneous direction of
electron motion and polarized perpendicular to the magnetic field. The really spectac-
ular sources of synchrotron emission are systems with jets (young stellar objects with
bipolar outflows, or active galactic nuclei). It is synchrotron emission that lights up the
great lobes of radio galaxies.

Dust

Interstellar dust consists of particles of silicates or carbon compounds; the largest are
' 0.5µm with ∼ 104 atoms, but some appear to have ∼< 102 atoms and thus might be
thought of as large molecules. Their nastiest property is that they absorb and scatter
light, and the observational effect of these two are known as extinction. (Extinction in
magnitudes is denoted as AV for V -band and so on.) Extinction gets less severe for
λ ∼> 1µm as the wavelength gets much longer than the grains, but it is worse for blue
than red right. Hence objects are said to be ‘reddened’ by interstellar extinction. Grains
are transparent to X-rays, though. From our location, extinction is worst along the
Milky Way disc, and the Galactic Centre is completely opaque to optical observations.

However, extinction by dust does one very useful thing for optical astronomers.
Spinning dust grains tend to align with their long axes perpendicular to the local
magnetic field. They thus preferentially block light perpendicular to the magnetic field.
Thus the observed polarization will tend to be parallel to the magnetic field. Hence
polarization measurements of starlight reveal the direction of the magnetic field (or at
least the sky-projection of the direction).

Dust also reflects light, with some polarization. This is observable as reflection
nebulae, where the stars cannot be seen (at least in optical) but faint diffuse starlight
can be seen as reflected by dust.

Light absorbed by dust will be reradiated as a blackbody-ish spectrum. Such a
spectrum is observed (from space, by IRAS) as diffuse emission superimposed on a re-
flected starlight spectrum, but the associated temperature is extremely high—∼ 103 K.
The interpretation is that some dust grains are so small (< 100 atoms) that a single
ultraviolet photon packs enough energy to heat them to ∼ 103 K, after which these
‘stochastically heated’ grains cool again by radiating, mostly in the infrared. This
process may be part of the explanation for the correlation between infrared and ra-
dio continuum luminosities of galaxies (e.g., at 0.1 mm and 6 cm), which seems to be
independent of galaxy type. The idea is that ultraviolet photons from the formation
of massive stars cause stochastic heating of dust grains, which then reradiate them to
give the infrared luminosity. The supernovae resulting from the same stellar popula-
tions produce relativistic electrons which produce the radio continuum as synchrotron
emission.
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Chemical enrichment

The birth and death of stars and what that does to the interstellar medium is a large
and very important subject. We won’t be able to do it any sort of justice, but just for
a sampler let’s discuss the effect on chemical evolution of the ISM.

Consider a region of a galaxy, small enough to be fairly homogeneous, but large
enough to contain a good sample of stars. Suppose at time t, the total mass of this
region is Mtotal, Mstars in stars and Mgas in gas; also say Mmetal is the part of Mgas in
metals. Thus the metallicity of the gas is

Z ≡ Mmetal

Mgas
. (3.1)

Now we consider the effect of forming some new stars over some time δt. This time is
longer than the time massive stars spend on the main sequence, so the newly formed
massive stars are supposed to have already gone supernova and spewed some more
metals into the ISM. Let δMstars be the change of stellar (or stellar remnant) mass, and
let the metal mass contributed to the ISM by this generation of stars be pδMstars (p
is known as the ‘yield’ and we will take it to be constant). We want to find the time
evolution of Z, from

δZ = δ

(
Mmetal

Mgas

)
=
δMmetal − ZδMgas

Mgas
(3.2)

We will assume that the system starts with only gas and at Z = 0.
The simplest approximation is the ‘closed box model’, where gas and stars neither

enter not leave this region of the galaxy. Then

δMmetal = pδMstars − ZδMstars = (p− Z)δMstars (3.3)

and
0 = δMtotal = δMstars + δMgas. (3.4)

Inserting these in equation (3.2) gives

δZ = −pδMgas

Mgas
, (3.5)

whence

Z = −p ln
(
Mgas(t)
Mgas(0)

)
. (3.6)

In other words,
Z = −p ln (gas fraction) .

Magellanic irregulars fit this reasonably well, and p is estimated to be' 0.0025. In spiral
galaxies, the gas fraction in the disc increases as we go outwards, and Z is observed to
decrease, though perhaps more steeply than this crude model predicts.

The closed box model can also be used to calculate the distribution of stellar
metallicities, because the metallicity of each star approximately indicates Z when that
star was formed. If we take all the stars now with metallicities less than some Z1, the
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sum of their masses equals Mstars(t) for the t when Z equalled Z1. To get Mstars(t) we
rewrite (3.5) as

δZ =
pδMstars

Mgas(0)−Mstars(t)
(3.7)

which gives
Mstars(t) =

(
1− e−Z/p

)
Mgas(0). (3.8)

This gives a tolerably good fit for metal-poor globular clusters. But it fails badly for the
solar neighbourhood: the most metal rich stars have Z ' Z� ' 0.02, and (3.8) predicts
that ∼ 50% of solar neighbourhood stars will have Z ≤ 1

4Z�; in fact only about 2% do.
This is known as the ‘G-dwarf problem’.

The G-dwarf problem indicates that the closed-box model is an oversimplifica-
tion, and that loss and/or accretion of material into a star-forming region needs to be
considered.

Problem 3.1: In this problem we consider a ‘leaky-box’ model, which simulates the effect of
shocks from supernovae and winds from young massive stars by making gas leave the formerly
closed box at a rate proportional to the star formation rate:

δMtotal = −cδMstars.

Use this to work out Mgas(t) in terms of Mtotal(0) and Mstars(t). Now modify the closed-box
relation between δMmetal and δMstars by adding an appropriate leaking term. [6]

Use these two expressions to derive

δZ =
pδMstars

Mtotal(0)− (1 + c)Mstars
. [2]

This expression shows that the leaky box model won’t solve the G-dwarf problem?
Why? [5]

If we allow the box to accrete gas, that does make metal poor stars rarer.

Problem 3.2: In this problem we consider the ‘accreting-box’ model, another modification
of the closed-box model, this time allowing for metal-free gas to be accreted into the system.

From the assumption that no metal enters or leaves the region, relate δMmetal and δMstars.
Allowing for (metal-free) gas accretion, relate δMstars to δMtotal and δMgas. Use the above
to show that

δZ =
(p− Z)δMtotal − pδMgas

Mgas
. [8]

This equation can be solved exactly with some awkwardness, but for us it’s enough to consider
the simplest case whether the gas accretion rate equals the star formation rate, so Mgas stays
constant. For this simple case show that Z asymptotes to p. [6]

Can you argue physically why we should expect such behaviour for stellar metallicities in
this case? [5]

In fact this model predicts that ' 3% of solar neighbourhood stars will have Z ≤ 1
4Z�.


