
1. Introducing Galaxies

Galaxies are a slippery topic in astronomy at present. Galaxies are much less well
understood than say stars; certainly our understanding is changing (and hopefully im-
proving) noticeably each year. The standard texts/references are Galactic Astronomy
by Binney and Merrifield, and Galactic Dynamics by Binney and Tremaine. The Phys-
ical Universe by Shu is more elementary, but very insightful and always repays reading.

The reason galaxies are difficult to understand is that they are made of three very
different kinds of things. There are stars of course, but there’s also the interstellar
medium (which produces stars, and is in turn fed by dying stars), and dark matter
(about which we know very little, except that it’s there). And these three all influence
each other. We’ll study each of these, and to a small extent how they influence each
other. Some galaxies (more of them in earlier epochs) have ‘active nucleii’ which can
vastly outshine the starlight, but we won’t go into that—we’ll confine ourselves to
‘normal’ galaxies.

There are three broad categories of galaxies:

Disc galaxies

These have masses of 106M� to 1012M�. The discs brightness tend to be roughly
exponential, i.e.,

I(R) = I0 exp[−R/R0] (1.1)

I0 is ∼ 102L� pc−2. The scale radius R0 is ' 4 kpc for the Milky Way. The visible
component is ' 95% stars (dominated by F and G stars for giant spirals), and the rest
dust and gas. The more gas-rich discs have spiral arms, and arms are regions of high
gas density that tend to form stars; clumps of nascent stars are observed as H II regions.
Disc galaxies have bulges which appear to be much the same as small ellipticals. All
disc galaxies seem to be embedded in much larger dark halos; the ratio of total mass to
visible stellar mass is ' 5, but we don’t really have a good mass estimate for any disc
galaxy.

Elliptical galaxies

These have masses from 106M� to 1012+M�. There are various functional forms around
for fitting the surface brightness, of which the best known is the de Vaucouleurs model

I(R) = I0 exp
[
−(R/R0)

1
4

]
. (1.2)

with I0 ∼ 105L� pc−2 for giant ellipticals. (To fit to observations, one typically un-
squashes the ellipses to circles first. Also, the functional forms are are only fitted
to observations over the restricted range in which I(R) is measurable. So don’t be
surprised to see very different looking functional forms being fit to the same data.) The
visible component is almost entirely stars (dominated by K giants for giant ellipticals),
but there appears to be dark matter in a proportion similar to disc galaxies. Ellipticals
of masses ∼< 1011M� rotate as fast as you’d expect from their flattening; giant ellipticals
rotate much slower, and tend to be triaxial—more on this later.

At the small end of ellipticals, we might put the globular clusters, even though
they occur inside galaxies rather than in isolation. These are clusters of masses from
104M� to 106.5M�, consisting exclusively of very old stars.
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Irregulars

Everything else! They tend to have strong emission lines, and their starlight is domi-
nated by B,A and F types. Basically, they look like they’ve just been shaken up and
are responding by forming stars.

Problem 1.1: Instead of functional forms for the surface brightness I(R), people sometimes
pick a functional form for the 3D density ρ(r). These are related by the projection

I(R) = 2

∫ ∞
R

rρ(r) dr√
r2 −R2

which is easily worked out numerically if not analytically.

A popular example are the Dehnen models:

ρ(r) =
q

4π

rq

r3(1 + r)q+1

where q is an adjustable parameter. Here the normalization is chosen so that ρ integrates to
unity. The special case of q = 1 (called the Jaffe model) is particularly important because it
is found to fit the observed I(R) of ellipticals at least as well as de Vaucouleurs’ profile.

What is the potential of a mass distribution with a Jaffe ρ(r)? [10]

The Dehnen models have an interesting limit as q → 0. What is it? [5]

Example [The fundamental plane for ellipticals] If we assume that all ellipticals have the
same constant mass to light ratio and the same form for the mass distribution (only scalable)
then M ∝ I0R2

0, where I0 is a characteristic surface brightness and R0 a characteristic radius.
The virial theorem implies M ∝ R0σ

2
0 where σ0 is a characteristic velocity dispersion (if we

assume dispersion dominates rotation). So under these assumptions we’d expect

R0I0σ
−2
0 = constant. (1.3)

Observationally, ellipticals are found to satisfy

R0I
0.9
0 σ−1.4

0 = constant (1.4)

to within observational uncertainties. In the space of logR0, log I0, log σ0, equation (1.4) is of
course a plane, and it is called the fundamental plane. Deviation from the virial prediction
presumably has something to do with varying mass to light, but nobody seems to have much
idea of why it’s a very good correlation in practice.

In diffuse dwarf ellipticals, I(R) falls off faster than in giant ellipticals or compact dwarf
ellipticals, so M ∝ I0R2

0, wouldn’t have the same proportionality factor. And observationally,
diffuse dwarf ellipticals don’t lie on the fundamental plane. tu

Problem 1.2: Suppose some category of galaxies has I(R) = I0 f(R/R0) with all galaxies
having the same I0 and function f but different galaxies having different R0. If the mass to
light is constant everywhere then show that

L ∝ v4

where L is the total luminosity and v is a characteristic velocity. [10]

For spirals, the L ∝ v4 relates the total light to the disc rotation velocity (as measured
in radio or infrared), and is called the Tully-Fisher relation. In ellipticals (with v identified
with the velocity dispersion) it is called the Faber-Jackson relation. Tully-Fisher is important
in distance scale work.
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Hubble types

On the whole, galaxy classification probably shouldn’t be taken as seriously as stel-
lar classification, because there isn’t (yet) a clear physical interpretations of what the
gradations mean. But some physical properties do clearly correlate with the so-called
Hubble types, so it’s worth learning about these at least.

Figure 1.1: The tuning fork diagram of Hubble types.

Figure 1.1 shows the Hubble types. Ellipticals go on the left, labelled as En, where
n = 10(1− 〈axis ratio〉). Then the lenticulars or disc galaxies without spiral arms: S0
and SB0. Then spirals with increasingly spaced arms, Sa etc. if unbarred, SBa etc. if
barred.

The left ones are called early types, and the right ones late types. People once
thought this represented an evolutionary sequence, but that’s long been obsolete. (Our
current understanding is that, if anything, galaxies tend to evolve towards early types.)
But the old names are still used.

We never see ellipticals flatter than about E7. The reason (as indicated by sim-
ulations and normal mode analyses) seems to be that a stellar system any flatter is
unstable to buckling, and will eventually settle into something rounder.

Note that bulges get smaller as spiral arms get more widely spaced. Theory for
spiral density waves predicts that the spacing between arms is proportional to the disc’s
mass density.
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Handwaving dynamics

Stars are so compact on the scale of a galaxy that a stellar system behaves like a
collisionless fluid (except in the cores of galaxies and globular clusters), resembling a
plasma in some respects. Gas and dust are collisional. This leads to two very important
differences between stellar and gas dynamics in a galaxy.

1) Gas tends to settle into discs, but stars don’t.
2) Gravity must be balanced by motion in stellar and gas dynamics, but in equilib-

rium gas must follow closed orbits (and in the same sense), but stars in general
don’t. Two streams of stars can go through each other and hardly notice, but
two streams of gas will shock (and probably form stars). You could have a disc
of stars with no net rotation (just reverse the directions of motion of some stars),
but not so with a disc of gas. People sometimes speak of ‘rotation-support’ and
‘pressure-support’ balancing self-gravity. Pressure support refers to the high veloc-
ity dispersion (compensating for low net-rotation) that comes from reversing stellar
motions; this stellar dynamical pressure needn’t be isotropic. Observationally gas
dispersions are never more than ' 10 km/sec while stellar dispersions can easily be
' 300 km/sec.
We can start putting together a general picture now. (The rest of this paragraph

varies from well-accepted to controversial to wildly speculative, so don’t take it too seri-
ously.) Primordial gas will tend to form rotating discs. Differential rotation in the discs
will cause spiral density waves, enhancing density along spiral arms and preferentially
forming stars. A bulge-less stellar disc is actually unstable to buckling, and produces
a bulge with part of its mass. (That’s what simulations indicate.) A bulge formed
this way will be rotationally supported like the disc that gave rise to it. Meanwhile
the disc will continue to form stars, so disc stars will tend to be younger than a bulge
stars. Discs that have turned almost all their gas into stars will have stellar discs, but
no spiral arms. Now, a disc galaxy can be disrupted by the gravitational influence of
another galaxy. It can be a merger of two or more galaxies, or the tidal disruption of
a single galaxy; both tending to disrupt discs and produce irregulars with much star
formation, then ellipticals. Disruptions of single galaxies will tend to produce rotation-
ally supported ellipticals; but for mergers the angular momentum vectors will tend to
cancel, producing pressure support. So we might expect giant ellipticals to be pressure
supported. But even a completely gas-free elliptical will generate gas from its dying
stars. This second-generation gas will of course settle into discs, and there we might
see spiral arms all over again. . .And all this while, dark matter (whatever it is) will be
finding gravitational potential wells in the neighbourhood of galaxies and form halos
(sort of like polarization clouds) around them.

Note, by the way, that all galaxies appear to have some stars ∼ 1010yr old. Ev-
idently galaxies all formed fairly early, though they have merged or been otherwise
disrupted much more recently.

To end this introductory chapter, let’s look at a picture that says rather a lot—it’s a
very deep photograph of the Sombrero galaxy: Figure 1.2. (You may have across a
gorgeous colour poster of this galaxy.) Is it an elliptical with a large embedded disc or
a spiral or lenticular with an extra large bulge? But in Figure 1.2 the main galaxy is
just an inset within a much larger dark halo. And what is that diffuse fan to the NE
and the loop to the SW? Almost certainly traces of past encounters with other galaxies.
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Figure 1.2: A recent deep photograph by David Malin of the Sombrero galaxy (aka M 104
and NGC 4594) with a ‘normal’ image inset to the same scale. The scale bar is 30′.



2. Stellar Dynamics

A system of stars behaves like a fluid, but one with unusual properties. In a normal
fluid two-body interactions are crucial in the dynamics, but stellar encounters are very
rare. Instead stellar dynamics is mostly governed by interaction of individual stars with
the mean gravitational field of all the other stars.

The virial theorem

Before going into the main material on stellar dynamics, it is worth deriving this basic
result. It states for any system of particles bound by an inverse-square force law, the
time-averaged kinetic energy (say 〈T 〉) and the time-averaged potential energy (say
〈V 〉) satisfy

2 〈T 〉+ 〈V 〉 = 0. (2.1)

To prove this, consider the quantity

F =
∑
i

miẋi · xi (2.2)

where mi are the masses. Clearly

dF

dt
= 2T +

∑
i

miẍi · xi. (2.3)

If F is bounded then the long-time average 〈dF/dt〉 will vanish. Thus

2 〈T 〉+
∑
i

mi 〈ẍi · xi〉 = 0. (2.4)

If the system is gravitationally bound, we have

2 〈T 〉 −G
∑
ij

mimj

〈
(xi − xj)
|xi − xj |3

· xi
〉

= 0. (2.5)

Interchanging the dummy indices in the second term and adding, we have

2 〈T 〉 − 1
2G
∑
ij

mimj

〈
1

|xi − xj |

〉
= 0. (2.6)

But the second term is now just minus the total potential energy, which proves the
result (2.1).

The virial theorem provides an easy way to makes rough estimates of masses,
because velocity measurements can give 〈T 〉. But it is prudent to consider virial mass
estimates as order-of-magnitude only, because (i) generally one can measure only line-
of-sight velocities, and getting T = 1

2

∑
imiẋ2

i from there requires more assumptions
(e.g. isotropy of the velocity distribution); and (ii) the systems involved may not be in
a steady state, in which case of course the virial theorem does not apply—clusters of
galaxies are particularly likely to be quite far from a steady state.
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Two important time scales

Consider a stellar system of size R, having N stars each of mass m; the stars are
distributed roughly homogeneously, with v being a typical velocity, and the system is
in dynamical equilibrium. Then from the virial theorem

v2 ' NGm/R. (2.7)

The crossing time (sometimes called dynamical time)

Tcross =
R

v
='

√
R3

NGm
or

1√
Gρ

. (2.8)

The relaxation time is how long it takes for a star’s velocity to be changed significantly
changed from two-body interactions. To estimate this, consider first one encounter,
with a star going past another with impact parameter b. The change δv in the star’s
velocity due to this encounter is

δv = Gmb

∫ ∞
−∞

dt

(b2 + v2t2)
3
2

=
2Gm
bv

. (2.9)

(Note that this will be perpendicular to the direction of motion.) Next we consider all
the encounters in one crossing time with impact parameters in the range (b, b + db).
There are 2Nbdb/R2 of these, since the surface density of stars is N/(πR2). The δv’s
due these encounters will tend to cancel, so we add their squares and then integrate
over b to get the total change in v2 over one crossing time:

∆v2(Tcross) =
∫ R

bmin

(
2Gm
bv

)2 2N
R2

b db = 8N
(
Gm

Rv

)2

ln
(

R

bmin

)
. (2.10)

The relaxation time Trelax is the time needed for ∆v2 ' v2. Thus

Trelax =
v2

∆v2(Tcross)
× Tcross =

1
8N ln(R/bmin)

(Rv)3

(Gm)2
. (2.11)

It’s easier to remember Trelax in crossing times. Taking R/bmin ' N and then using
equation (2.7) to eliminate R, we get

Trelax

Tcross
' N

8 lnN
. (2.12)

Galaxies are ∼< 103Tcross old and have ∼> 106 stars, so stellar encounters have
negligible dynamical effect. In globular clusters, which may have ∼ 106 stars and be
∼ 105 crossing times old, stellar encounters start to become important, and in the cores
of globular clusters two-body relaxation is very important.

Problem 2.1: The v and m dependences of the relaxation time can actually be extracted
by a back of the envelope calculation.

Consider N stars of mass m each in a box of side R, and let these stars be fixed. Then
send another star through this box with speed v. How long does it take for the star to pass
near enough to another star that kinetic and two-body potential energies are equal? (Order
of magnitude only.) [15]
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Problem 2.2: Most researchers doing N -body simulations study the dynamics of galaxies,
but some study the dynamics of globular clusters. The latter group of people would seem to
have an easier job, because they can easily afford as many particles as there are stars, and they
don’t have to worry about gas dynamics. So you’d think that globular cluster dynamics would
have been cleaned up by now. But in fact, globular cluster dynamics has not been cleaned up,
and plenty of difficult research remains to be done. This problem is to work out why.

Consider a globular cluster and a galaxy, both ∼ 1010 yr old. The globular cluster has
size ∼ 100 pc and ∼ 106 stars with typical velocity 50 km s−1. The galaxy has ∼ 10 kpc
and ∼ 1010 stars with typical velocity 200 km s−1. Now let’s say both of these are simulated
using 106 particles. Can you see two reasons why the globular cluster simulation will be more
difficult? [10]

The collisionless Boltzmann equation

In the absence of two-body relaxation, stars move under the total gravitational field of
all other stars. This field depends only on location in space and we can express it by
the potential Φ(x). Thus the motion of any star is given by Hamilton’s equations

dx
dt

=
∂H

∂p
,

dp
dt

= − ∂H

∂x
, (2.13)

with Hamiltonian

H =
p2

2m
+ Φ(x). (2.14)

If you haven’t met Hamiltonian mechanics before, not to worry: you can easily verify
that equations (2.14) and (2.13) give the usual Newtonian equations; but remember
the form of equations (2.14).1 It’s very useful to consider the density of stars in 6-
dimensional ‘phase’ space (x,p); that density is called the distribution function and
denoted by f .

Since stars are conserved, f must satisfy a continuity equation:

∂f

∂t
+

∂

∂x
·
(
f
dx
dt

)
+

∂

∂p
·
(
f
dp
dt

)
= 0. (2.15)

Substituting from Hamilton’s equations gives

∂f

∂t
+
dx
dt
· ∂f
∂x

+
dp
dt
· ∂f
∂p
≡ df

dt
= 0. (2.16)

In Hamiltonian dynamics, (2.16) is known as Liouville’s theorem, but in stellar dynamics
it’s usually called the collisionless Boltzmann equation. Physically, it means that if you
move with a star, the phase space density around you stays constant. As the sun moves
inwards in the Galaxy, the stellar density around it will increase, but at the same time
the spread of stellar velocities around it will increase so as to keep phase space density
constant.

1 Hamiltonian dynamics is a beautiful subject in itself, and helps understand the relations—and
differences—between classical mechanics and optics, quantum mechanics, and quantum field theory.
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The collisionless Boltzmann equation, and the Poisson equation (which is the grav-
itational analogue of Gauss’s law in electrostatics) together constitute the basic equa-
tions of stellar dynamics:

df

dt
= 0, ∇2Φ(x) = 4πGρ(x). (2.17)

Example [N -body simulations] You have probably come across N -body simulations of stars
in galaxies. The particles in a galaxy simulation do not correspond to stars. They cannot,
they have too few particles (105 to maybe 108 particles max, versus maybe 1012 stars in the
galaxies being modelled). The appropriate interpretation of simulation particles is as Monte-
Carlo samplers of f . Simulation particles have to made collisionless artificially (since there
are comparatively few of them, the two-body relaxation time will be correspondingly shorter).

The standard way of doing this is to replace the 1/r gravitational potential by (r2 + a2)−
1
2 ,

which amounts to smearing out the mass on the ‘softening length’ scale a.

N -body simulations are widely used now to study the evolution of galaxies, and a trendy
research area at present is to incorporate gas dynamics in them. tu

Though f is a density in phase space, the full form of the collisionless Boltzmann
equation doesn’t have to be written in terms of x and p. We can express df/dt in any
set of six variables in phase space.

Example [Cylindrical coordinates] In terms of cylindrical coordinates R, φ, z and velocities
vR, vφ, vz we have

∂f

∂t
+ Ṙ

∂f

∂R
+ φ̇

∂f

∂φ
+ ż

∂f

∂z
+ v̇R

∂f

∂vR
+ v̇φ

∂f

∂vφ
+ v̇z

∂f

∂vz
= 0. (2.18)

To eliminate the dots we use the standard relations for velocity and acceleration components.
We have

Ṙ = vR, φ̇ =
vφ
R
, ż = vz

v̇R = − ∂Φ

∂R
+ v2

φ, v̇φ = − 1

R

∂Φ

∂φ
−
vRvφ
R

, v̇z = − ∂Φ

∂z
,

(2.19)

where we have noted substituted −∇Φ for the acceleration. tu

You should remember that f is always taken to be a density in six-dimensional phase
space, even in situations where it is a function of fewer variables. For example, if f
happens to be a function of energy alone, it is not the same as the density in energy
space.




