## **Physical Constants**

| Permittivity of free space                   | $\mathcal{E}_0$ | = | $8.854 \times 10^{-12}$ | $\mathrm{F}\mathrm{m}^{-\mathrm{l}}$         |
|----------------------------------------------|-----------------|---|-------------------------|----------------------------------------------|
| Permeability of free space                   | $\mu_0$         | = | $4\pi \times 10^{-7}$   | $\mathrm{Hm}^{-l}$                           |
| Speed of light in free space                 | С               | = | $2.998 \times 10^{8}$   | ${\rm ms}^{-l}$                              |
| Gravitational constant                       | G               | = | $6.673 \times 10^{-11}$ | $\mathrm{N}\mathrm{m}^2\mathrm{kg}^{-2}$     |
| Elementary charge                            | е               | = | $1.602 \times 10^{-19}$ | С                                            |
| Electron rest mass                           | me              | = | $9.109 \times 10^{-31}$ | kg                                           |
| Unified atomic mass unit                     | m <sub>u</sub>  | = | $1.661 \times 10^{-27}$ | kg                                           |
| Proton rest mass                             | mp              | = | $1.673 \times 10^{-27}$ | kg                                           |
| Neutron rest mass                            | m <sub>n</sub>  | = | $1.675 \times 10^{-27}$ | kg                                           |
| Planck constant                              | h               | = | $6.626 \times 10^{-34}$ | Js                                           |
| Boltzmann constant                           | $k_{\rm B}$     | = | $1.381 \times 10^{-23}$ | $J K^{-1}$                                   |
| Stefan-Boltzmann constant                    | $\sigma$        | = | $5.670 \times 10^{-8}$  | $W m^{-2} K^{-4}$                            |
| Gas constant                                 | R               | = | 8.314                   | $\mathrm{J}\mathrm{mol}^{-1}\mathrm{K}^{-1}$ |
| Avogadro constant                            | $N_{\rm A}$     | = | $6.022 \times 10^{23}$  | mol <sup>-1</sup>                            |
| Molar volume of ideal gas at STP             |                 | = | $2.241 \times 10^{-2}$  | m <sup>3</sup>                               |
| One standard atmosphere                      | $P_0$           | = | $1.013 \times 10^{5}$   | $\mathrm{N}\mathrm{m}^{-2}$                  |
|                                              |                 |   |                         |                                              |
| Atomic number of aluminium                   |                 | = | 13                      |                                              |
| Atomic weight of aluminum                    |                 | ~ | 27                      |                                              |
| Reduced Planck constant                      | ħ               | = | $h/2\pi$                |                                              |
| Binding energy of hydrogen atom ground state |                 | = | 13.6 eV                 |                                              |

## SECTION A – Answer SIX parts of this section

- 1.1) Place the following examples of naturally occurring plasmas in order of (a) increasing temperature and (b) increasing electron density: (i) the Solar wind, (ii) the Solar chromosphere and (iii) the Earth's ionosphere. Name one man-made plasma which can be hotter and denser than any of those listed.
- 1.2) Define the *electron plasma temperature*, *T*. If  $T=1.5\times10^{6}$  K determine the corresponding value  $T_{eV}$  in electron volts.
  - [7 marks]

[7 marks]

1.3) For a plasma in which the ions are singly charged, derive an expression for the rise in potential caused by a local imbalance between the electron and ion densities. Hence argue that, over appropriate length and time scales, the Solar corona is electrically neutral.

[7 marks]

1.4) Under what conditions is *local thermodynamic equilibrium* suitable for describing a plasma? What determines the populations of the ionic energy levels in such a plasma? Discuss the transition between local thermodynamic equilibrium and coronal equilibrium.

[7 marks]

1.5) The plasma angular frequency  $\omega_{\rm P}$  is given by

$$\omega_{\rm P}^2 = \frac{e^2 n_{\rm e}}{\varepsilon_0 m_{\rm e}}$$

where  $n_e$  is the plasma electron density. State the significance of the critical density  $n_{cr}$  and use the equation for  $\omega_{\rm P}$  to define it. Calculate a value for  $n_{\rm cr}$  at a wavelength of 355 nm.

[7 marks]

1.6) Briefly discuss, using a flowchart or otherwise, how particle-in-cell codes are used in modelling plasmas.

[7 marks]

1.7) Describe how a plasma that would be suitable for an x-ray laser could be formed.

[7 marks]

1.8) The magnetic moment of a charged particle of mass *m* spiralling around a field line in a plasma is  $\frac{1}{2}mv_{\perp}^2/B$  where  $v_{\perp}$  is the velocity component perpendicular to the magnetic flux density **B**. Use this to explain how charged particles are trapped in magnetic confinement fusion experiments. If, at the point of weakest field,  $B_0=0.8$  T and  $v_{\perp}=\frac{1}{2}v_z$ , where  $v_z$  is the velocity component in the direction of **B**, determine the value of *B* at which the particles are trapped.

[7 marks]

## **SECTION B – Answer TWO questions**

2) a) Show, explaining each step, that the equation of motion for a displaced electron in a plasma, assuming that thermal energy and collisions can be neglected, is

$$m_{\rm e}\ddot{x} + \left(e^2 n_{\rm e}/\varepsilon_0\right)x = 0,$$

where  $n_{\rm e}$  is the plasma electron density.

[8 marks]

b) By considering the behaviour of the free electrons in a plasma under the influence of an external electromagnetic field, derive an expression for the plasma refractive index  $n_{\rm P}$ .

[12 marks]

c) Calculate a value for  $n_{\rm P}$  at a wavelength of 532 nm for a plasma with an electron density of  $10^{27} {\rm m}^{-3}$ . Determine the longest wavelength of radiation that can propagate in this plasma.

[10 marks]

3) a) What is the *principle of detailed balance*?

[2 marks]

b) Define the *Einstein coefficients*. Use the principle of detailed balance and the blackbody formula

$$w_{\omega} = \frac{n_{\rm P}^2 \hbar \omega^3}{2\pi^2 c^3} \frac{1}{\mathrm{e}^{\hbar \omega/kT} - 1},$$

where  $w_{\omega}$  is the spectral energy density and  $n_{\rm P}$  is the plasma refractive index, to derive relationships between the Einstein coefficients.

[12 marks]

c) If two energy levels  $E_1$  and  $E_2$  have statistical weights  $g_1 = 6$  and  $g_2 = 10$  determine the ratio of number densities  $n_2/n_1$  above which amplification of an incident parallel beam of radiation can occur. State one other condition the incident beam must satisfy in order for amplification to occur.

[6 marks]



Figure 3.1

d) Amplification of radiation in plasmas can lead to short wavelength lasing action. Figure 3.1 shows spectra obtained from measurements on plasmas formed from a plastic, Mylar. Explain the notation used to label the spectral lines, and identify which, if any, of the labelled lines shows lasing action, explaining your reasoning for each line.

[10 marks]

CP/3650

4) a) What causes plasma spectral lines to be (i) Doppler broadened and (ii) pressure broadened? Identify two types of pressure broadening.

[4 marks]

b) Show that a Maxwellian distribution f(v) of ion speeds, i.e.,  $f(v) \propto \exp(-m_{ion}v^2/2k_BT)$ , gives a contribution to the spectral line shape that has a Gaussian profile. Show that an expression for the full width at half maximum  $\Delta_D$  (FWHM) of this profile is

$$\Delta_{\rm D} = 2(2\ln 2)^{1/2} \, \frac{v_{\rm ion}}{c} v_0 \, .$$

c) In an aluminium plasma the FWHM of a Doppler broadened line at 1.6 keV is measured to be  $\approx 0.5$  eV. Estimate the ion temperature in electron volts.

[4 marks]

[8 marks]

d) Show that, in the nearest neighbour approximation, the profile of a Stark broadened spectral line is proportional to  $|v - v_0|^{-5/2}$ , where  $v_0$  is the central frequency of the line. Discuss why, close to  $v_0$ , the profile deviates from this shape.

[8 marks]

e) Show that the width of a Stark broadened line is approximately proportional to  $n_i^{2/3}$ , where  $n_i$  is the ion number density. A Stark broadened line in the spectrum of an aluminium plasma with  $n_i = 10^{16} \text{ m}^{-3}$  has a calculated width, in a particular model, of 10 eV. The same line in the spectrum of a nebula has a width of 2 eV. *Estimate*, stating any assumptions, the ion density of the nebula.

[6 marks]

5) a) Describe, with the aid of a suitably labelled energy-level diagram, the processes of *bremsstrahlung* and *recombination radiation*. What is meant by *classical bremsstrahlung*?

[6 marks]

b) The power spectrum for classical bremsstrahlung from an electron of initial speed v may be written as

$$\frac{\mathrm{d}P}{\mathrm{d}\omega} = \frac{Z^2 e^6}{(4\pi\varepsilon_0)^3} \frac{16n_\mathrm{i}}{3m_e^2 c^3 v} \frac{\pi}{\sqrt{3}} G$$

where  $n_i$  is the ion density and the other symbols have their usual meanings. Explain the significance of the *Gaunt factor*, *G*.

[4 marks]

c) Modify the above equation for the bremsstrahlung power spectrum to give an expression for the power emitted in recombination radiation from an electron of initial speed v in a hydrogenic plasma, explaining your reasoning. You may assume that for hydrogenic ions of charge *Ze* the energy of a bound state with principal quantum number *n* is given by

$$E_n = -\frac{Z^2 e^4 m_{\rm e}}{2(4\pi\varepsilon_0\hbar)^2} \frac{1}{n^2}$$

[10 marks]

d) For a Maxwellian distribution of electron speeds the ratio of powers emitted in recombination radiation (RR) and bremsstrahlung (B) is given by

$$\frac{\mathrm{RR}}{\mathrm{B}} = -\frac{2E_n}{nT_{\mathrm{eV}}} \frac{G_n}{\overline{g}(\omega, T_{\mathrm{eV}})} \exp\left(-\frac{E_n}{T_{\mathrm{eV}}}\right)$$

where  $E_n$  and  $T_{eV}$  (the electron temperature) are in electron volts. To what do the Gaunt factors  $G_n$  and  $\overline{g}(\omega, T_{eV})$  correspond? Use this equation to plot the ratio of intensities in recombination radiation and bremsstrahlung for a plasma consisting of hydrogenic aluminium ions and for electron temperatures of 100 eV and 500 eV and principal quantum numbers of 1, 3 and 6, explaining any assumptions. Discuss your results.

[10 marks]