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SECTION A – Answer SIX parts of this section

1.1) Describe how the Monte Carlo method can be used to find the value of π.
[7 marks]

1.2) The recurrence relation for Chebyshev polynomials, Tn(x) is:
1where),()(2)( 11 ≥−= −+ nxTxxTxT nnn

Show that this relation is only stable for 0 < |x| < 1.
[7 marks]

1.3) Use a Taylor series expansion of f(x+∆x) to show that a numerical evaluation
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By using the symmetric difference formula 
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how is the accuracy improved?
 [7 marks]

1.4) Suppose that x1 is an approximate value of the root of an equation f(x) = 0.

Show that a more accurate estimate is given by 
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1

1
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Raphson method). When does this method fail?
[7 marks]

1.5) An equation for the conservation of a quantity u, in one dimension, can be
expressed as:

x
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where v is a constant.
Show that for this equation, the finite difference equations in the forward time,
centred space (FTCS) scheme are unstable for any choice of ∆t and ∆x.

[7 marks]

1.6) A continuous waveform F(t) is digitally sampled at intervals of ∆. Show
graphically that two waves with frequencies f1 and (f1+1/∆) cannot be
distinguished as components of the digitally sampled waveform F(t).

[7 marks]

SEE NEXT PAGE
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1.7) Explain, as a series of steps, how you would use the simulated annealing
technique to find an estimate of the global minimum of a function of N
variables, F(x1, x2, x3,... xN) with respect to those N variables. (You need not
discuss the choice of the “temperature” variable or the step size.)

[7 marks]

1.8) Illustrate the method of Gaussian elimination, by using it to solve the
following equations:
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Under what circumstances does this method fail or become unreliable?
[7 marks]

SECTION B – Answer TWO questions

Explain how you would solve the problems numerically. A detailed description of
the method of solution is required, not a computer program or an actual
solution.

2) A circular drumskin is fixed around its circumference. When it is struck in the
centre, the vertical displacement  z(r, θ, t) of the drumskin satisfies the
(circularly symmetric) wave equation.:
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Express this equation in finite difference form.
 [5 marks]

Show that these finite difference equations are stable if 1≤
∆
∆
x
tu .

[15 marks]

If the initial displacement of the drumskin is a cone shape, with the maximum
displacement at the centre, explain how you would use the finite difference
equations to find the subsequent displacement of the centre of the drumskin.

[10 marks]

SEE NEXT PAGE
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3) The equation of motion of a simple pendulum, of fixed length l, is

0sin
d
d

2

2

=+ θθ
l
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t
,

where θ is the angle to the vertical.

Separate this differential equation into two first order ordinary differential
equations.

[4 marks]

The pendulum is released from rest at an angle of θ0. Show how the fourth
order Runge-Kutta method can be used to find the angle of the pendulum as a
function of time.

[20 marks]

Describe how you would use the “shooting method” in order to find the value
of the angle θ0 such that the period of the pendulum is exactly 2.25 s.

[6 marks]

4) Sketch the function 
x

xsin  in the range .π≤≤π− x

[4 marks]

Which value of x might be expected to cause problems in the numerical
evaluation of this function? How could these problems be overcome?

  [4 marks]

Describe how you would evaluate x
x

x dsin
�
π

π−

 using:

a) the trapezium rule, 
  [6 marks]

b) the expansion of 
x

xsin  as a series,

[6 marks]

c) a Monte Carlo technique.
  [6 marks]

Explain which of a), b) or c) you would expect to be the most accurate and
efficient evaluation method?

[4 marks]

[The series for �

!9!7!5!3
sin

9753 xxxxxx +−+−= ]

SEE NEXT PAGE
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5) Explain what is meant by an “unstable recursion relation”.   [3 marks]

A recursion relation for Legendre polynomials, Pn(x), is:
)()()12()()1( 11 xnPxxPnxPn nnn −+ −+=+

Show that this recursion relation (for large n) is stable for |x|<1, but unstable
for |x| >1.

[10 marks]

Given that P0(x) = 1 and P1(x) = x, derive P4(x).
  [5 marks]

The summation formula for Legendre polynomials is:
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 are the binomial coefficients, and [n/2] is the integer

produced by rounding n/2 down.

Describe how you would use the summation formula to calculate P4(x) with
x = 10.

[10 marks]

What are the most reliable and efficient methods for calculating P4(x) for x < 1
and x >10.0? Justify your answer.

[2 marks]
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