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SECTION A — Answer SIX parts of this section

Evaluate the integral

/ (26(2t + 3) + 3H(t +2))e "dt,
where 4(t) denotes the Dirac delta function and H(t) denotes the Heaviside step
function.

[7 marks]

A curvilinear coordinate system (g1, ¢2) is defined by the transformation equa-
tions
T = acoshqycosqy, y=asinhgsings,

where a is a constant. Determine the unit base vectors e; and eq for this
coordinate system.

[7 marks]
Determine the Fourier transform of the function
f(z) =d(x — w/w) cos(wzx),
where §(z) denotes the Dirac delta function and w is a constant.
[7 marks]

By assuming a solution of the form y = Axz¢, determine the general solution of
the differential equation

[7 marks]

A solution of the one-dimensional diffusion equation can be written in the form
¢(x,t) = Az + B + e_a2“’2t(C coswx + Dsinwz) .

Determine the general solution which satisfies the boundary conditions that
#(0,t) = ¢p and ¢(L,t) = ¢1, at all times ¢ > 0, where ¢y and ¢, are constants.
[7 marks]

The function ¢(z,y, ) satisfies Laplace’s equation, V2¢ = 0, in cartesian coor-
dinates. Separate the equation into three ordinary differential equations.
[7 marks]
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1.7) The generating function for Legendre polynomials P, (z) is

Gz, t) = (1 -2zt +1°)72 =Y P (a)t",
n>0

where |z| < 1and 0 < ¢ < 1. Determine the values of P,(0) forn = 0,1, 2,3, 4.

[7 marks]
1.8) The generating function for Laguerre polynomials L, (x) is
o—at/(1-1)
G(z,t) = Ly(a)t" = —————
(0.8) = Y Lofayn = S
n>0
Show that L L
n+1 n
il e el N S
dz dz g
[7 marks]
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SECTION B — Answer TWO questions

2a) Use the series method to find a solution of the equation

d*y dy

[8 marks]

b) Use the method of Frobenius to show that one solution of the equation

dy  dy
— —2r—+6y=0
dz? r Ty
is
3 3 3 9
y=ag |1— 5(2902) + 1(2902)2 + a(2x2)3 + §(2x2)4 + ,
and find the the other solution.
[18 marks]
Show that the series solution converges for all |z| < co.
[4 marks]

3) Show that the Fourier transform of an even function f(z) can be written in the
form

gV = 2 /0 " f () cos(2mA) das.

[5 marks]
Prove that the Fourier transform of the function
f(z) = exp(—alz|), for —oo <z < oo
is given by
2a
A) = .
9() a? + 4r2)\2
[10 marks]
Use the inverse Fourier transform to evaluate the integrals
/ —— _dt and / S8t
o 1+1¢2 o 1+1¢2
[15 marks]
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4) Given the recursion relations for Legendre polynomials P, and their derivatives
Pl
(n+1)P, =P, ., —zP,
nP, =zP, — P,

n—1

show that
(Poti1(z) = Pooi(z))

[5 marks]

Using the generating function for Legendre polynomials given in question 1.7
determine the values of P, (1) and P,(—1).

[6 marks]
Suppose that the function
-1, —-1<x<0,
f(x)_{L 0<z<l,
is expanded in a series of Legendre polynomials as
fz) =" anPa(z).
n>0
Show that a,, = 0 when n is even, and when n is odd,
Ay = —Pn_|_1(0) + Pn_l(()) .
[12 marks]

Determine the expansion of f(z) in Legendre polynomials up to and including
the term in Ps.
[7 marks]

[You are given that
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5) The temperature at all points of a cylindrical object is given by the function
¢(r, z,t) where ¢ is the time. The cylinder has height L and radius R. The
coordinate system is chosen so that the circular ends of the cylinder are in the
planes z = 0 and z = L, and the centreline of the cylinder coincides with the
z-axis. The temperature obeys the heat conduction equation

Vo 06 2% 1 o0
7‘87" or 022 a2 ot’

where o is the coefficient, of heat conduction.

Use the method of separation of variables to obtain three ordinary differential
equations, namely,

Li;t(t) + w?aPs(t) = 0
d2

Va2 (2 Xin(z) = 0
1d di(r) B
rar A0 =0.

where w? and A\? are separation constants.
[6 marks]

Use the method of Frobenius to show that the series solution for 4 (r), when
AF#0, s

)\7"22”
_QOZ /) s

where ag is a constant. This solution is proportional to the Bessel function
Jo()\’r‘).
[8 marks]

What is the solution for 11 (r) when A = 07
[2 marks]

Assume that the solution for the temperature ¢(r, z,t) which is finite when » = 0
is

d(r,z,t) = A+ e_o‘z“’thO()\r) [B cos(Vw? — A2z) + Csin(vw? — )\22)] ,

where A, B and C are constants and £ > 0. At time ¢ = 0 the object is placed in
an oven which is at temperature ¢, so that for all times £ > 0 the temperature
of the surface of the object is ¢;. Show that this boundary condition implies
that ” o .2

o ]S 2_”7-( js
A= ¢y, )\_E and w” = 12 IR

where j, is the s*® zero of Jy(z) and n,s = 1,2,....

[10 marks]

Write down the most general solution for ¢(r, z,t)
[4 marks]
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