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SECTION A — Answer SIX parts of this section

1.1) Find the solution of the differential equation

5 dy 1
rT———y=—
d;[; y y b
which satisfies the boundary condition that y = 0 when = = 1.
[7 marks]

1.2) Find the solution of the differential equation

d*y  dy

z 9 7 113y =

72 +6dt + 13y =0,

which satisfies the boundary conditions that y = 0 and dy/dt = 2 when ¢ = 0.
[7 marks]

1.3) Given that the scalar field ¢ = 1/u where u = (2 + 4®)/3, calculate grad ¢.
[7 marks]

1.4) Find div E and curl E when E = z sin yi+cos yj+xyk. Is the field E irrotational
or solenoidal or neither?
[7 marks]

1.5) Calculate the eigenvalues of the matrix

A= (_11 ;) .
(7 marks]

1.6) A circular laminar of radius R centred at the origin has a mass density p =
pov/ 22 +y?, where pg is a constant. Using plane polar coordinates calculate
the mass of the laminar.

[7 marks]

1.7) Given the vector field E = i—zj—yk calculate the surface integral |, 5 E.dS where
S is the square in the (z,y)-plane with sides of unit length with one corner at

the origin and the opposite corner at the point (1,1,0).
[7 marks]
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1.8) The Fourier series representation of the function f(z) = |z| when —T/2 < z <

T/2 is
T T (=)™ —1)
n>1
Sketch the function F(f(z)) when —3T/2 < x < 3T/2 and find the sum of the
series
1 1 1
I+ g5+ gty toee

[7 marks]
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SECTION B — Answer TWO questions

2) The behaviour of a damped simple harmonic oscillator acted on by an external
force F(t) is determined by the differential equation
d?y

d
w—{—defz—{—y:F(t),

where k is a damping constant.. What is the general solution of this equation
when k£ < 1 and F(t) = 07
[6 marks]

What is the solution which satisfies the boundary conditions that y = 1 and
dy/dt = 0 when ¢t = 07
[7 marks]

Briefly describe in words the behaviour of your solution for y as a function of

time f.
[2 marks]

Show that the solution has successive maxima and minima at times £,, given by
nmw

b = ———,
V1-—k?

where n =0,1,2,....
[6 marks]

If the driving force is given by F(t) = sinwt, where w is an angular frequency,
find the solution for y(t) applicable when kt > 1.
[9 marks]
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3) Three bacterial species eat each other but are also supplied with food from an
external source. The rate of change of the number N; of each species 7 is given
by the set of coupled differential equations

dNy

W:_Nl_{_ZNQ_{_NS
dN,

—= =2N N.

7 1+ 3Ns

dNs

—2 = N; +3N;5.

7t 1+ 3iV3

By assuming a solution of the form N = ae*, where

Ny
N=| N
Ns

?

deduce that there is a matrix 4 such that

Aa = Ja.

[5 marks]

Show that two of the eigenvalues of A are -2 and 3, and find the other eigenvalue
and all the eigenvectors.
[15 marks]

Thence write down the general solution of the equations for N.
[4 marks]

If the initial condition at time # = 0 is that N = (Np, 0,0) show that, when

£ 0,
No 1y

2N1:N2:2N3: &

[6 marks]
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4) Calculate divA and curl A when A = —yi + 2k, and verify directly that

curlcurl A = grad div A — V2A.

[7 marks]
The transformation from Cartesian coordinates (z,y, z) to cylindrical coordi-
nates (r,0,z') is given by
x=rcosf, y=rsinf, z=12".
Find the Jacobian of the transformation.

[4 marks]
Stokes’ theorem states that

/curlA.dS:/ A.dr ,
s c

where A is a vector field and C' is the boundary of a regular open surface S.
Verify Stokes’ theorem directly for the vector field A given above, when S is the
surface of the tin can bounded by 22 + 32 =1, z = 0 and 2z = a, where a is a
constant, with the open end of the can at z = 0.

[13 marks]

Use Gauss’ theorem to show that

A.dS = 7a,
SI

where S’ is the closed surface given by S (above) and the plane z = 0.
[6 marks]
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5) The complex Fourier series of a function f(z) in the range 0 < x < T has the

form
o0

F(f(x)) = Z cn exp(2inmz/T)

n=—oo

where

1 (T
Cn = / f(z)exp(—2inmz/T)dx .
T Jo
Sketch the function
fl@)==

for x in the interval 0 < x < T, and sketch the Fourier series representation of
f(x) over the range —T < = < 3T.

[5 marks]
Show that the Fourier series representation of f(x) is given by
T T X exp(2inmz/T)
F = — - —
U@) =5~ 5 22 n
n£0
T T sin(2nmx/T)
2 7 n '
n>1

[10 marks]

Does the value of the Fourier series representation agree with what you expect
at the points x =T/2 and z = T7

[5 marks]
By considering the value of the Fourier series at 2 = T'/4, show that
T 1 1
S
4 3 - )
[5 marks]
Use Parseval’s theorem to show that
S
72 _- — .
1 n 6
[5 marks]
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