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CP /2201

Values of physical constants

Planck constant h = 6.626 x 10734 Js
speed of light c = 2.998 x 108 ms~!

1.1)

1.2)

1.3)

1.4)

1.5)

SECTION A — Answer SIX parts of this section

The radiation emitted by a He-Ne laser has wavelength A = 633 nm. How many
photons are emitted per second by a laser with a power of 0.5 mW 7
[7 marks]

Explain what is meant by a complete orthonormal set of functions. What is an
etgenfunction expansion?
[7 marks]

Explain what is meant by the correspondence principle and by the complemen-
tarity principle.
[7 marks]

The possible energies of a particle in a box with sides (2a, 2a,a) are given by
Enl,n2,n3 - (77/12 + n22 + 4”32)E7

where nq, no, n3 are positive integers and F is a constant. Find the energy ¢p of
the ground state in terms of the energy F and show that the energies of the two
lowest non-degenerate excited levels are ¢; = 12F and ¢; = 18F. How many
degenerate levels lie between €y and €2, and what are their degeneracies?

[7 marks]

At a given instant, a quantum harmonic oscillator is in a state described by the
normalized wave function

P(z) = \/guo(x) + ;\/guz(x) + ;u;),(x) ,

where u, () is the normalized energy eigenfunction of the oscillator correspond-
ing to an eigenvalue F,, = (n + %)hw, n =0,1,2,.... What are the possible
results of a measurement of the energy of this system and what are their rela-
tive probabilities? Using these probabilities, show that the expectation value of
the energy of the oscillator is %hw.

[7 marks]
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1.7)

1.8)

CP /2201
Starting from the definition of the orbital angular momentum operator
L=rxp,

derive expressions for the Cartesian components L;,L, and L, in the
Schrodinger representation. The operators representing any two components
of orbital angular momentum are incompatible. What does this mean?

[7 marks]

An electron is in the unnormalised spin state

-(3)

Normalise ¢ and find the expectation value in this state of the spin component

1 0 1
sohn(0 1),

What is the probability that a measurement of S, gives the value +%h?
[7 marks]

The energy levels of the hydrogen atom are given by

1 €2 1
2 4mepa, n2

E, = (n=1,2,3,...)

Use the Bohr frequency condition to show that the wavelength of the radiation
corresponding to a transition between levels n = 2 and n = 1 is given by

1 1 1
—=R|=5—=].
el o)
Derive an expression for the constant B. What are the degeneracies of the two

levels?
[7 marks]

SECTION B — Answer TWO questions
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Define an Hermitian operator.
[4 marks]

An Hermitian operator A corresponding to an observable A has normalized
eigenfunctions u; and uo with corresponding eigenvalues a; and as. Similarly,
B corresponding to observable B, has normalized eigenfunctions v; and vy with
corresponding eigenvalues by and by. The eigenfunctions are related as follows

U = (1)1—{—21)2)/\/5, U2:(21}1—1}2)/\/5.

Suppose that when A is measured, the value a1 is obtained. If B is now measured

followed by A, show that the probability of obtaining a; again is %

[26 marks]

The raising and lowering operators Ly and L_ are defined by
L, =L,+iL,,

where (L, Ly, L,) are the components of the Hermitian operator L represent-
ing the orbital angular momentum. The function Y7,,(0, ¢) is the normalized
eigenfunction of L, and L® with eigenvalues mh and £(£ + 1)h?, respectively,
where / =0,1,2,...and m =0, +1,+2,... + /.

Show that L is not Hermitian.
[6 marks]

Show that
[L,,L,] =hL, and [L?,L,]=0.

[6 marks]

Using the results in (ii), show that L.Y,,, is an eigenfunction of L, and L* and
find the corresponding eigenvalues.
[12 marks]

By interpreting the results in (iii), justify the name of raising operator for L .
[2 marks]

What properties would you expect the lowering operator L_ to possess?
[4 marks]

You may assume the commutator relations
Ly, L, =ihL,, [Ly,L,] =ihL,, L., L] =ihL,

and

[L*,L,) = [L* L,)=[L*,L.]=0.
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(i)

(iii)

(iv)
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A beam of particles of mass m and energy F is incident from z < 0 upon a
potential step at = 0 of height V, (> E). Let

B 2mE 2m

k2 oal )\2:?(V0—E).

The incident particles are represented by the wavefunction e**7. Calculate the
reflection coeflicient R and compare your answer with the classical result.
[15 marks]

Show that in the region x > 0 the amplitude of the wave function is
2 cos O exp(—Ax), where tanf = \/k .

[12 marks]
What is the net flux of particles in this region?
[3 marks]
A quantum particle of mass m moves in one dimension subject to a potential
0 |z |< a
Viz) = ’ ’
(z) {+oo, |z |>a.
The energy eigenvalues are F, = h*n?n2/8ma® for n = 1,2,3,... and the

corresponding orthonormal eigenfunctions are

i () = {OL_é cos(nmz/2a) , n=1,3,5,...
" a~ 7 sin(nrz/2a) n=2,4,6,....

Suppose that at £ = 0, the particle is described by the state function

3

Y(r) = Sua(e) + Sus(e).

Verify that ¢(z) is normalized.
[5 marks]

Write down the state function ¥(z,t) at time ¢.
[5 marks]

Calculate the probabilities of finding the particle at time ¢ with the energies
E,(n=1,2,3,...) and show they are the same as the corresponding probabili-
ties at £ = 0.

[10 marks]
Calculate the probability density |\I!\2
density at the origin varies with #.

and hence determine how the probability

[10 marks]
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