
Appendix B

Revision of Newtonian Gravitation

B1. Summary

This appendix summarises some basic results relating to gravitation from Newtonian
Mechanics. This information covers most of the basic principles from physics about
gravitation that are needed for the course.

B2. The Gravitational Field from a Point Mass

The attractive force between two particles of mass m1 and m2 a distance r apart is

Fgrav =
Gm1m2

r2
,

where G is the universal constant of gravitation, with G = 6.673 × 10−11 m3 kg−1s−2.
Using Newton’s Second Law, the acceleration due to gravity at a distance r from a
point mass m is

g =
Gm

r2
,

directed towards the point mass.
The acceleration due to gravity is the gravitational field strength.
The gravitational potential a distance r from a point mass m is

Φ = − Gm

r
.

In vector notation, the gravitational acceleration at a point with position vector r
caused by a point mass m at position vector rp is

g = − Gm

|r − rp|3
(r − rp) .

The gravitational potential at position r is then

Φ = − Gm

|r − rp|
.

B3. General Results about Gravitational Fields

The results in this section apply to any gravitational field, whether caused by point
masses or continuous distributions of mass, and apply outside or inside any distribution
of mass.
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The acceleration due to gravity g at any point is related to the gradient of the gravi-
tational potential Φ by

g = − ∇Φ ,

in any gravitational field.
The potential is negative at all times, tending to zero at infinite distance. The S.I.
unit of potential is m2 s−2.
The potential energy of a particle of mass m at a point in a gravitational field is

U = m Φ ,

where Φ is the potential at the point. This defintion means that the gravitational
potential energy is negative.
Gauss’s Law relates the integral of the gravitational acceleration over a closed surface
to the mass lying inside that surface. If g is the acceleration due to gravity and dS is
an element of the surface S, then

∫

S

g.dS = − 4π GMS

for any closed surface S, where MS is the total mass contained within the surface.
This is the direct equivalent of Gauss’s Law for electrostatics (

∫

S
E.dS = QS/ε0).

Substituting for g = −∇Φ, we also have
∫

S

∇Φ.dS = + 4π GMS

The Poisson Equation relates the Laplacian of the potential at a point to the mass
density. It states that

∇2Φ = 4π G ρ ,

where Φ is the potential at the point and ρ is the density.

B4. Distributions of point masses

In this section we shall consider the gravitational effects of a series of point masses mi

which are located at positions ri, for i = 1, N .
The gravitational potential at some position r caused by the distribution is

Φ(r) = −G

N
∑

i=1

mi

|r − ri|
,

where G is the constant of gravitation.
The acceleration due to gravity at the point r is

g = −G

N
∑

i=1

mi

|r − ri|3
(r − ri) .

The internal gravitational potential energy of the distribution of point masses is

U = − 1
2
G
∑

i,j
i6=j

mi mj

|ri − rj|
.
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B5. Continuous distributions of mass

The gravitational potential at a position r in a continuous distribution of mass enclosed
in a volume V is given by

Φ(r) = −G

∫

V

ρ(r′)

|r − r′| dV ′ .

where r′ is the position vector of the volume element dV ′, ρ(r′) is the mass density at
the position r′, and G is the constant of gravitation. The gradient of this is

∇Φ(r) = G

∫

V

ρ(r′) (r − r′)

|r − r′|3 dV ′ .

So the acceleration due to gravity at the point r is

g = −∇Φ(r) = −G

∫

V

ρ(r′) (r − r′)

|r − r′|3 dV ′ .

The internal gravitational potential energy of some distribution of mass is

U = − 1
2
G

∫

V

∫

V

ρ(r)ρ(r′)

|r − r′| dV dV ′ .

where r is the position vector of the volume element dV and where r′ is the position
vector of the volume element dV ′.

B6. The Gravitational Field within a Spherically

Symmetric Distribution of Mass

The acceleration due to gravity at a distance r from the centre of a spherically sym-
metric distribution of mass is

g =
GM(r)

r2

where M(r) is the mass interior to a radius r, and is directed towards the centre of the
distribution. This result does not depend on how the mass is distributed, other than
it is spherically symmetric. Mass outside the radius r does not affect the gravitational
field at r in this spherically symmetric case. This is the same acceleration as would
be given by a point mass M(r) at the centre of the distribution.
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This result can be derived very easily using Gauss’s Law.

Consider a spherical sur-
face S of radius r centred
on the distribution.

The acceleration due to
gravity at a point on the
surface is g. The mag-
nitude of the acceleration
everywhere on the sur-
face is |g| ≡ g, from sym-
metry.

From Gauss’s Law,
∫

S

g.dS = − 4πGM(r) ,

where M(r) is the mass inside the surface and G is the universal constant of gravita-
tion.
But an element of the surface area dS is anti-parallel to the acceleration due to grav-
ity g, so g . dS = − |g| |dS| = − g dS. But since g is constant over the spherical
surface,

− g

∫

S

dS = − 4πGM(r)

∴ − g (4πr2) = − 4πGM(r) ,

which gives,

g =
GM(r)

r2
.

This analysis is possible because of the spherical symmetry.
The gravitational potential Φ at a distance r from the centre of the spherically symm-
teric distribution is therefore

Φ =
GM(r)

r
.

The internal gravitational potential energy of some spherically symmetric distribution
of mass can be obtained by considering the potential energy of a thin spherical shell
within the distribution and integrating over all such shells. Consider a thin shell of
radius r and thickness dr centred on the distribution. The gravitational potential at
the shell is Φ = −GM(r)/r, where M(r) is the mass inside the shell, using the result
above. The shell will have a mass dM = 4πr2ρ(r) dr, where ρ(r) is the density. The
potential energy of the shell due to the distribution of mass is

dU = Φ dM = − GM(r)

r
dM = − 4πG rM(r) ρ dr .
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Integrating over the whole distribution (from r = 0 to infinity),

U = −G

∫ Mtot

0

M(r) dM

r
= − 4πG

∫ ∞

0

rM(r) ρ(r) dr

where Mtot is the total mass of the distribution. Either of these expressions for U can
be used, depending on which is most convenient for the particular circumstances.
For the case of a uniform sphere of mass Mtot and radius R, this gives

U = − 3

5

GM 2
tot

R
.

B8. Potentials Within Galaxies

It is very difficult to measure the gravitational potentials Φ of galaxies with accuracy
because of the poor constraints on the dark matter far from their centres. However,
the gradients ∇Φ of the potentials can be measured directly from the orbital velocities
of stars and gas with some precision.
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