RELATIVITY (MTH6132)
SOLUTIONS TO THE PROBLEM SET 9

1. To compute the timelike geodesic equations recall that
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The geodesic equations are then obtained by noticing that
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and " denotes the derivative with respect to r. The actual expressions are then
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In addition one has equation (5).

2. For a timelike geodesic one has that
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A radial geodesic is defined by the conditions
0=¢=0.

Now, the geodesic equation for the time coordinate gives
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Substituting this into equation (5) one obtains
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so that
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If I =1, the latter gives
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Thus,
2GM T2
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from where
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Hence 1M
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3. Now consider an orbit in the Equatorial plane (6 = 7/2). Hence = 0. Further-
more, the orbit is circular so that » = D, and 7 = 0. The integration of equation (1)

gives
: 2GMN\ ! 2GMN !
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Also, from equation 4 one has

d

I (7" go) =0=17%p=~h, aconstant.

Notice that equation (2) reduces to
—2r* + A =0

Thus, substituting the previous two equations one has that
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Now, for this problem, equation (5) gives

Substituting (6) into the last equation one obtains
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Finally, following the hint, the time elapsed in one orbit is given by
27 g 27 27 l)2 2 l)2
T—/ id@ s@ldsO/ hw—ﬂ,

0

where equation (4) has been used. Substituting the obtained value for h one gets
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as required.



