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Experiment L18 - Newton’s Rings 
 
Introduction: 
Newton’s rings are interference fringes, which occur when a beam of light is split into two 
components, which are then recombined after travelling different distances.  For example, part of a 
light beam may be reflected at point A at the top of a transparent medium such as a film, while the 
remainder passes into the medium.  This light is refracted at an angle as it passes in, is reflected off the 
bottom of the medium at point B and then exits at point C where it is refracted again.  The two light 
waves coming from A and C are now travelling in the same direction, but there is a path difference 
between them.  The two reflected rays will reinforce one another or cancel each other out, depending 
on the magnitude of their path difference.  The amount of refraction undergone by the light will depend 
on the refractive indices of the film or medium, and its surrounding environment, for example, air.   

Bright fringes occur when constructive interference occurs and the light waves reinforce each other, i.e. 
when the path difference = integer ×  wavelength. 
Dark fringes occur when destructive interference occurs and the light waves cancel each other, i.e. 
when the path difference = (integer + 

2
1 )  ×  wavelength. 

The path difference depends on the thickness of the film, t, so if the film varies in thickness from place 
to place a series of fringes of constant thickness will be formed. 
  
Theory: 
Newton’s rings are formed when light from a source is projected onto a convex lens resting on a 
uniform glass plate.  Interference fringes occur when this light is reflected back from the bottom 
surface of the lens and the top surface of the glass plate.  

Side view of lens: R is the radius of curvature, rm is the radius of the mth ring. 
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 The interference fringes appear as concentric circles in the bottom of the lens curvature, as the path 
difference of the reflected light varies due to the lens curvature. 
 
 
 

1)      2)  
Above view through a microscope   Side view (exaggerated drawing) of the lens base 
 
These circular fringes may be used to find the radius of curvature of the lens when light of a known 
wavelength is beamed down into the lens.  In this experiment the diameter of each fringe is measured 
using a travelling microscope with a Vernier scale. 
 
Objective: 
To determine the radius of curvature of a convex lens using a known wavelength of light emitted by a 
source and the diameters of the circular interference fringes formed when light from a green mercury 
vapour  source is reflected back from the bottom surface up through the lens piece.  These circular 
fringes may be used to determine the constant radius of curvature, because the path difference of the 
light will vary from place to place as it is reflected back up through the glass lens piece. 
 
Formulae used to calculate the radius of the lens curvature: 
The radius of curvature of the lens is related to the radius of the mth ring by the equation: 
 
rm 

2 = R2 – (R – t)2 

 
So, 
 
rm 2 = t (2R – t) 
 
But if t << 2R the approximation can be made that: 
 
rm 2 = 2 R t 
 
For vertical light rays, the path difference is just 2t, so for dark rings: 
 
rm 2 = R m λ  
 
Since dm = 2 r m, the radius of curvature of the lens, R is related to the diameter of the mth ring, dm by 
the formula: 
 
(dm) 2 = 4 R m λ    (where m = 1, 2, 3, etc. i.e. the ring number) 
 
R is obtained by measuring the diameters of m consecutive rings formed by the interference fringes and 
plotting a graph of (dm) 2 against m. R can then be obtained from the gradient of the graph by 
rearranging the above formula: 
 
∆ (dm) 2 / ∆ m = 4 R λ 
    
Therefore, 
Gradient of graph = 4 R λ  
  
(4 λ may be taken as a constant for a known wavelength of light.  In this case 4 ×  (546.1 ×  10 –9) m = 
2.184 ×10 –6 m). 
 
Radius of lens curvature, R = ∆ (dm) 2 / ∆ m 
        2.184 ×  10 -6 
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Method and Experimental set-up: 

 
 
Green light, of wavelength λ = 546.1 nanometers, is projected from a mercury vapour source down into 
the lens resting on a glass plate via a glass reflector slide.  The interference rings are then viewed 
through a microscope and the diameters of successive rings measured in such a way as to minimise 
displacements of the microscope. 

 
The diameters of 18 successive rings were measured by counting outward from the centre of the central 
‘airy’ disk ensuring that the cross hairs of the microscope viewfinder traversed  through the centres of 
the rings.  Then scanning  inward ring by ring, successive measurements above centre, then below 
centre were recorded for each of m rings.   Measurements were obtained by measuring successive 
displacements of the microscope against its Vernier scale as it was moved from ring to ring.  In this 
case m = 18 rings. The diameter, dm is then the modulus of the ‘Above centre’ measurement minus the 
corresponding ‘Below centre’ measurement for each ring. 
 
A graph was then plotted for the (diameter)2, dm

2, against ring number, m. 
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Data and Data Analysis: 
 
The following set of data was obtained for a sample set of Newton’s rings viewed and measured under 
a travelling microscope: 
 
Ring number, m: Diameter of ring, dm (x 10 –2 m):    Diameter 2: (dm) 2 (x 10 -5m 2): 
 
 1   0.130     0.1690 
 2   0.200     0.4000 
 3   0.240     0.5760 
 4   0.285     0.8122 
 5   0.330     1.0890 
 6   0.350     1.2250 
 7     0.405     1.6402 
 8   0.420     1.7640 
 9   0.440     1.9360 
10   0.455     2.0702 
11   0.480     2.3040 
12   0.510     2.6010 
13   0.543     2.9484 
14   0.570     3.2490 
15   0.590     3.4810 
16   0.615     3.7822 
17   0.625     3.9062 
18   0.650     4.2250  
 
A graph was plotted for this data and a line of ‘best fit’ was drawn through the data points ‘by eye’.  
The gradient was estimated to be (2.43 ± 0.16) micrometers.   
 
Using the formula:  

λR
m

dm 4)( 2

=
∆

∆
 

where λ =546.1 nanometers for the green mercury vapour source 
 
Therefore,  

Gradient of the graph = 4 R λ 
 

where 4 λ = 4 × (546.1×10− 9 m) = 2.184 ×10 –6, a constant.  
 
From             R = ∆ (dm) 2 / ∆ m 

2.184 ×  10 –6 

 

Substituting in the values obtained for the gradient of the line fitted ‘by eye’ on the graph,  

R = 
)101.546(4

10243.0
9

25

m
m

−

−

×
×

= 1.11243362 m ≈ 1.112 m 

 
The uncertainty in the radius of curvature was: 

 

Rδ = 
)101.546(4

10016.0
9

25

m
m

−

−

×
×

= 0.07324666 m ≈ 0.073 m 

 
The radius of curvature, R, for the lens piece was then determined to be 1.112 ±  0.073 m based on the 
gradient of the line of ‘best fit’. 
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A ‘least squares’ calculation was also carried out for the same data using a computer program 
(‘MSLinefit’).  The gradient was calculated to be (2.380 ± 0.041) micrometers.  The radius of 
curvature was recalculated based on the ‘least squares’ computer calculation to be (1.090 ± 0.019) m. 
 
Summary of Calculated Least Squares Data: 
 
I:  X: (Ring No.)  Y: (dm)2  Y CALC: DEVIATION: 
 
1  1.0000   0.1690  0.0978  -0.0712 
2  2.0000   0.4000  0.3358  -0.0642 
3  3.0000   0.5760  0.5739  -0.0021 
4  4.0000   0.8122  0.8119  -0.0003 
5  5.0000   1.0890  1.0499  -0.0391 
6  6.0000   1.2250  1.2879  +0.0629 
7  7.0000   1.6402  1.5260  -0.1142 
8  8.0000   1.7640  1.7640  -0.0000 
9  9.0000   1.9360  2.0020  +0.0660 
10  10.0000   2.0702  2.2400  +0.1698 
11  11.0000   2.3040  2.4781  +0.1741 
12  12.0000   2.6010  2.7161  +0.1151 
13  13.0000   2.9484  2.9541  +0.0057 
14  14.0000   3.2490  3.1921  -0.0569 
15  15.0000   3.4810  3.4301  -0.0509 
16  16.0000   3.7822  3.6682  -0.1140 
17  17.0000   3.9062  3.9062  -0.0000 
18  18.0000   4.2250  4.1442  -0.0808 
 
Coordinates of the centre of gravity of the data points: 
 
Mean X = 9.5 
Mean Y = 2.121 ± 0.021 
 
Most Probable Straight Line Through The Data Points: 
 
Gradient m = 0.2380 ±  0.0041 
Y-Intercept c = -0.140 ±  0.044 
X-Intercept b = 0.590 ±  0.180 
 
(From computer printout from ‘MS Linefit’) 
 
The recalculated value of the radius of curvature based on the ‘least squares’ line of ‘best fit’ through 
the data points is: 
 

R  = 
)101.546(4

102380.0
9

25

m
m

−

−

×
×

= 1.089544 m ≈ 1.090 m 

 

Rδ = 
)101.546(4

100041.0
9

25

m
m

−

−

×
×

= 0.018769456 ≈ 0.019 m 

 
Comparison between the two results obtained for the radius of curvature: 
The calculated ‘least squares’ value of 4 R λ has a smaller uncertainty value than the value calculated 
by fitting a line of best fit ‘by eye’ whose uncertainty was 4 times as great.  The two values themselves 
were close, however, the value obtained by the ‘least squares’ method should be closer to the nominal 
value for the particular lens piece used. 
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Exaggerated diagrammatic side view of Newton’s rings in the bottom of a lens piece.  R is the radius of 

curvature of the lens and dm is the diameter of the mth ring. 
  

 
Conclusion: 
The two estimates of the radius of curvature of the lens were then compared with the 
nominal value of 1.0 m: 
 
From the gradient of the line of ‘best fit’ drawn by eye:         R = 1.112 ± 0.073 m 
 
From ‘least squares’ calculation:             R = 1.090 ± 0.019 m 
 
Nominal value for the radius of curvature for the particular lens used: R = 1.0 m 
 
Therefore the value of the radius of curvature based on the ‘least squares’ calculation 
of 4 R λ was closer to the nominal value than the value obtained by fitting a line ‘by 
eye’.   Both values were quite close to the nominal value of 1.0 m.  The uncertainty in 
the value of R based on the graph is about four times the uncertainty obtained from 
the ‘least squares’ calculation: 
 
0.073 / 0.019 = 3.8421 
 
The least squares calculation of the line of ‘best fit’ is the more accurate method to 
use, based on the comparison of the results obtained for radius of curvature and its 
uncertainty. 
  
 

Approximation of the relative size of the Newton’s rings compared with the overall lens as they appear 
to the naked eye. 


