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Solution of differential equations by series

This is largely revision of the material in Part IA Differential Equations, using the language
of complex variables. You will not be asked to solve differential equations by series; but it is
important to know that this can be done. It is essential to understand the nature of the resulting
solutions, and in particular the significance of the the indicial equation and its solutions.

We will investigate the solutions, in the neighbourhood of z = 0, of the equation

w′′ + p(z)w′ + q(z)w = 0. (∗)

Recall first that z = 0 is called an ordinary point of the equation if both p(z) and q(z) are
analytic at z = 0 and that otherwise z = 0 is a singular point of the equation. Some singular
points are more benign than others; in particular, if both zp(z) and z2q(z) are analytic at z = 0,
then z = 0 is called a regular singular point of the equation.

Solutions near an ordinary point

Theorem If p(z) and q(z) are analytic in the disc |z| < R, then there exist two linearly
independent solutions of (∗), w1(z) and w2(z), such that:

• w1(z) and w2(z) are analytic in |z| < R (and possibly in a larger disc);

• w1(0) 6= 0; w2(0) = 0 and w′2(0) 6= 0 (i.e. the roots of the indicial equation are 0 and 1).

Remarks

1. Note that (for example) z and z2 cannot both satisfy an equation of the form (∗) for which
z = 0 is an ordinary point.

2. An example of an equation with solutions that are analytic in a disc larger than the disc
in which coefficients p(z) and q(z) are analytic is

w′′ − 2
1

z − 1
w′ + 2

1
(z − 1)2

w = 0

which has solution A(z − 1) + B(z − 1)2, an entire function despite the singular point of
the equation at z = 1.

3. We can understand the result in the second bullet point by noting that, for |z| � 1,
equation (∗) is approximately w′′ + p0w

′ + q0w = 0 for which solutions are of the form
either exp(αz) and exp(βz) (in which case linear combinations can be taken to satisfy the
required conditions) or exp(αz) and z exp(αz) in which case the required conditions are
satisfied.

The theorem can be proved by substituting p(z) =
∞∑

n=0
pnzn, q(z) =

∞∑
n=0

qnzn and w(z) =
∞∑

n=0
anzn into the differential equation, equating coefficients of zn and checking the radius of

convergence. Please don’t attempt it. (In any case, there are better ways: try googling Picard.)
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Solutions near a regular singular point

Suppose zp(z) and z2q(z) are analytic in the disc |z| < R and let

p(z) =
∞∑
−1

pnzn, q(z) =
∞∑
−2

qnzn.

The indicial equation is
σ2 + (p−1 − 1)σ + q−2 = 0.

Informally, it can be thought of in connection with the |z| � 1 approximation to (∗), namely

w′′ + p−1z
−1w′ + q−2z

−2w = 0

which has solutions Azσ1 + Bzσ2 , where σ1 and σ2 are the roots of the indicial equation above,
or zσ(A + B log z) if these roots are equal (note the need for the log in this case).
Theorem Let z = 0 be a regular singular point of the equation (∗). Then there exist two
linearly independent solutions w1(z) and w2(z) such that:

• either w1(z) = zσ1u1(z) and w2(z) = zσ2u2(z) where ui(z) are analytic for |z| < R (and
maybe in a larger disc) and ui(0) 6= 0;

• or σ1 = σ2 + N , where N is a non-negative integer, and w1(z) = zσ1u1(z) and w2(z) =
zσ2u2(z) + w1(z) log z where ui(z) are analytic in for |z| < R (and maybe in a larger disc)
and ui(0) 6= 0.

To prove this theorem, set w(z) = zσ
∞∑
0

anzn, where the arbitrariness in σ is removed by choosing

a0 6= 0. Substituting into (∗) and equating the coefficient of zn+σ to zero gives

anF (n + σ) = −
n−1∑
k=0

ak[(k + σ)pn−k−1 + qn−k−2] (n > 0) (1)

a0F (σ) = 0 (2)

where
F (x) ≡ x(x− 1) + p−1x + q−2 ≡ (x− σ1)(x− σ2).

Since a0 6= 0, equation (??) is exactly the indicial equation. The exponents (i.e. the roots of
this quadratic) satisfy

σ1 + σ2 = 1− p−1, σ1σ2 = q−2.

If they do not differ by an integer, then the recurrence relations (??) will determine two linearly
independent solutions which can be written in the form given in the first bullet point.

If σ1 = σ2 +N (N = 1, 2, ...), the recurrence relations will give one solution corresponding to
σ1 but will usually break down for the smaller root when the coefficient of aN vanishes (because
F (N + σ2) = F (σ1) = 0). (It may happen that the remainder of the Nth recurrence relation
also vanishes, in which case there is no problem.) Then (and always if N = 0) it is necessary to
seek a log solution of the form

w(z) = zσ1 log z
∞∑
0

anzn + zσ2
∞∑
0

bnzn

where the an have already been determined. Substituting into the differential equation will give
recurrence relations for bn. (The logs should cancel identically.) This may not be a very pleasant
task.

The final step of the proof would be to check radii of convergence. Again, there are better
ways.
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