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Solution of the Airy equation by integral representation

In this example, the Airy equation is solved using the Laplace representation. This equation is
of exceptional importance both in its own right (for example, in optics) and as an approximation
to the equation w′′+f(x)w = 0 near a point at which f(x) = 0 (this is the basis of one treatment
of the WKB approximation).

We obtain two linearly independent integral representation — as expected for a second-order
differential equation. Since the integrand (the same in both cases) is entire and nowhere zero, the
representations differ only in the directions in which the paths of integration go out to infinity.

We will find solutions of the Airy equation

w′′ + zw = 0

in the form
w(z) =

∫
γ
f(t)eztdt (∗)

where f(t) is an as yet unknown function and γ is a path to be determined once f(t) is known. We
expect that there will be many choices of γ, two of which lead to linearly independent solutions
of the differential equation. The function f(t) will be uniquely determined up to (obviously) a
multiplicative constant.

We start by substituting (∗) into the differential equation, differentating under the integral
sign: ∫

γ
(t2 + z)f(t)eztdt = 0.

We cannot immediately say that the integral is identically zero so the integrand must vanish.
However, we can determine circumstances in which the integrand will vanish, and if this gives
two linearly independent functions, we are finished.

The immediate problem is the presence of the z term in the integral. We can’t alleviate the
problem by a clever choice of f(t) involving z, because we assumed when differentiating under
the integral sign that f did not depend on z. Our strategy, which will work for any polynomial
in z, is to remove the z term by integrating by parts:∫

γ
zf(t)eztdt =

∫
γ
f(t)

∂ezt

∂t
dt

=
∫

γ

(
∂
(
f(t)ezt

)
∂t

− df

dt
ezt

)
dt

= f(t)ezt
∣∣
γ
−
∫

γ

df

dt
eztdt,

where the first term of the last equation is to be evaluated at the endpoints of the path γ.
Thus we require

f(t)ezt
∣∣
γ

+
∫

γ

(
t2f(t)− f ′(t)

)
eztdt = 0.
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This we can achieve if we choose f(t) such that

t2f(t)− f ′(t = 0 i.e. f(t) = e
1
3
t3 ,

where the constant of integration in f(t) has been omitted since it corresponds merely to an
constant multiple in w(z), and if we choose γ such that

e
1
3
t3+zt

∣∣∣
γ

= 0. (∗∗)

The obvious choice of γ which satisfies (∗∗) is a closed curve. This works; but since the
function f(t)ezt, which appears in the integrand of w(z), is entire the corresponding solution to
the Airy equation is w(z) = 0. The only other possibility, in view of the fact that f(t)ezt 6= 0
for any value of t, is a path that begins and ends in sectors of t = ∞ for which f(t)ezt → 0 as
t →∞. Note that the end points of γ cannot depend on the position of z, because (again) that
would have given rise to extra terms when we differentiated the integral.

Now et3+zt ≈ et3 for large t, so (setting t = |t|eiθ) we need to begin and end the path in
sectors for which cos(3θ) < 0. There are three such sectors (see sketch) so any two of three
paths will do; clearly, we can’t use all three since the paths sum to a closed curve and hence the
three corresponding solutions sum to zero.

What we haven’t shown is that any two functions of the form∫
γ
e

1
3
t3+ztdt,

where γ = γ1, γ2 or γ3, are linearly independent. The easiest way to do this is to consider
asymptotic values, which is beyond the scope of this course. Alternatively, we could calculate
w(0) and w′(0) for each solution (they come out in terms of Γ functions), and show that their
ratios are different for the different functions.
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