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5 MOLECULES

5.1 SCHRÖDINGER EQUATION FOR MOLECULES

(See text books or lecture notes for figure of molecular coordinates)

RN and ZN = Position vector and charge of Nth nucleus

ri = Position vector of ith electron

Time independent Schrödinger equation:

ĤΨ(R1, R2, R3, ..., r1, r2, ...) = EΨ(R1, R2, R3, ..., r1, r2, ...) .

(1)

The Hamiltonian is:

Ĥ(R1, R2, ..., r1, r2, ...) =
∑
N

−h̄2

2MN
∇2
R︸ ︷︷ ︸

K.E. of

nuclei

+
∑
i

−h̄2

2m
∇2
i︸ ︷︷ ︸

K.E. of

electrons

+ V (RN , ri)︸ ︷︷ ︸
Coulomb

Interactions

(2)

where the potential is :

V (RN , ri) =
∑
i,j
i>j

1

|ri − rj|
e−–e− repulsion

+
∑

N,M
N>M

ZNZM
|RN −RM |

Repulsion

between nuclei

− ∑
N,i

ZN
|RN − ri|

Attraction

between nuclei

and electrons

. (3)
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Because of the interaction between electrons and nuclei, the solu-

tion cannot be simply separated into nuclear and electronic com-

ponents, i.e.

Ψ(RN , ri) 6= ν(RN)ψ(ri)
1

5.2 BORN-OPPENHEIMER APPROXIMATION

The Born-Oppenheimer approximation is underpinned by fact

that nuclei move much more slowly than electrons, since they are

much heavier, i.e., me
MN

� 1 . For simplicity we will use a general

diatomic molecule to explain the approximation.

(See text books or lecture notes for figure of diatomic coordinates)

Hamiltonian can be written:

Ĥ(R, ri) = − h̄
2

2µ
∇2
R +

∑
i

−h̄2

2m
∇2
i + V (R, ri) (4)

with µ the reduced mass of the nuclei.

BORN-OPPENHEIMER APPROXIMATION

1. Clamp nuclei in place. In other words, set the internuclear

coordinate to a constant value:

R = constants

Hence, neglect nuclear kinetic energy term, − h̄2

2µ∇
2
R, in the

Hamiltonian (4).
1to simplify the notation, sometimes we will write Ψ(RN , ri) but it should be understood that here

RN stands for all nuclear position vectors and ri for all electronic positions
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2. Having ‘pinned’ the nuclei, now solve the Schrödinger Equa-

tion for electronic motion:

Ĥel(ri;R)ψ(ri;R) = Eel(R)ψ(ri;R) (5)

Ĥel(ri;R) =
∑
i

−h̄2

2m
∇2
i︸ ︷︷ ︸

K.E. of

electrons

+ V (ri;R)︸ ︷︷ ︸
P.E. with

clamped

nuclei

(6)

Note that R is now a parameter on which the wavefunction

and Hamiltonian depend. To indicate this we write (ri;R).

This is the electronic Schrödinger equation, solve for

different values of R,

3. Assume the solution of the Schrödinger equation has the form:

Ψ(R, ri) = ν(R)ψ(ri;R) (7)

where ψ(ri;R) is the solution to eq. 5

Put this form into the full Schrödinger Equation including

the nuclear kinetic energy term:− h̄
2

2µ
∇2
R +

∑
i

−h̄2

2m
∇2
i + V (R, ri)

 ν(R)ψ(ri;R)

= Eν(R)ψ(ri;R) (8)

4. Kinetic energy operator for the nuclei:

−h̄2

2µ
∇2
RΨ(R, ri) = − h̄

2

2µ
∇2
Rν(R)ψ(ri;R)

= − h̄
2

2µ

[
ψ∇2

Rν + 2∇Rψ · ∇Rν + ν∇2
Rψ

]
.
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The key point of the B–O approximation is that electronic

wavefunctions are quite insensitive to changes in nuclear po-

sitions ∇Rψ and ∇2
Rψ are negligible and

−h̄2

2µ
∇2
RΨ(R, ri) = − h̄

2

2µ
ψ(ri;R)∇2

Rν(R) (9)

5. Finally, using this result we can simplify the Schrödinger

Equation (8) in step 4:ψ
− h̄

2

2µ
∇2
Rν(R)


 +

∑
i

−h̄2

2m
∇2
i + V

ψ
︸ ︷︷ ︸
our clamped solu-

tions from 1

= Eelψ(ri;R)

ν(R) = Eν(R)ψ

Re-arranging and cancelling ψ as we are not operating on it

anymore: − h̄
2

2µ
∇2
R + Eel(R)

 ν(R) = Eν(R) . (10)

This gives a Schrödinger Equation for nuclear mo-

tion. The electronic energies, Eel(R), act as an effective po-

tential in which the nuclei move.

SUMMARY of Born-Oppenheimer approximation

1. Nuclei move much more slowly than electrons ( MP � me),

take R a constant value.

2. Calculate electronic energies and wavefunctions using elec-

tronic Hamiltonian, i.e. neglecting ∇2
R/2µ term in Ĥ .

E and Ψ for electrons depend parametrically on R.



5 MOLECULES 5

3. The total wavefunction is separable (but not exactly) into

nuclear × electron part and put it into total Hamiltonian.

4. In total Ĥ , as e− adjust instantaneously to changes in position

of nuclei, KE term of nuclei does not act on the electronic

wavefunction.

5. End up with a Shrodinger eq. for the nuclear motion (1D for

diatomic), where the electronic energies at different internu-

clear distances provide a potential in which the nuclei move.

5.3 THE H+
2 MOLECULE

H+
2 is simplest molecule possible: it only has one electron and

two protons. (See diagram in text books or in lecture notes) B–O

approximation: fix the positions of the nuclei and concentrate on

the electronic part.−∇2
r

2
− 1

rA
− 1

rB
+

1

R

ψ(rA, rB;R) = Eel(R)ψ(rA, rB;R)

(11)

RA −RB = R and RA = −RB = R/2

rA = RA − r ; rA = |RA − r| ;rB = RB − r ; rB = |RB − r|

When R is large , we will have either :

(A)—a neutral hydrogen atom in the ground state and

(B)—a proton, i.e., we have :

H–H+: ψ(rA, rB, R)−→
R→∞Φ1s(rA)

or

H+–H : ψ(rA, rB, R)−→
R→∞Φ1s(rB)
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Φ1s(ri) is the ground 1s wavefunction of the hydrogen atom. When

r=rA, Φ is centered on the nucleus A and when r=rB it is centered

on B.

In between, we suppose we have some superposition

ψ ∼ C1Φ1s(rA) + C2Φ1s(rB)

where C1 and C2 are unknown constants.

Now, because H+
2 is a homonuclear molecule (A=B), the prob-

ability of the electron being around A is the same as that of being

around B and the wavefunction must reflect this symmetry so:

ψ+ = 1/
√

2[Φ1s(rA) + Φ1s(rB)] (symmetric or gerade)

ψ− = 1/
√

2[Φ1s(rA)− Φ1s(rB)] (antisymmetric or ungerade)

Building a molecular wavefunction from a superposition of atomic

orbitals is a standard technique of molecular physics (LCAO =

Linear Combination of Atomic Orbitals).

Electron distributions (see figure 5.1) ψ+ provides plenty of elec-

tron density between protons A and B to neutralize mutual Coulomb

repulsion.(ψ+ represents an example of a COVALENT BOND,

where an electron is shared between two nuclei.)

For a ψ− state, electrons avoid middle region. As we will see later,

this leads to a state that is not stable.

5.4 CALCULATION OF ELECTRONIC ENERGIES
FOR LOWEST STATES OF H+

2

The energy of the ψ± states is:

E±(R) =
∫
ψ∗±Ĥelψ±dτ∫
ψ∗±ψ±dτ

=
A±
N±

=
expectation value of Ĥel

normalization constant
.
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Then, the normalization term is:

N± =
1

2

∫
[Φ∗1s(rA)± Φ∗1s(rB)] [Φ1s(rA)± Φ1s(rB)] dτ

=
1

2

[
1 + 1± 2

∫
Φ∗1s(rA)Φ1s(rB)dτ

]
= 1± I(R) ,

I(R) is the OVERLAP between Φ1s(rA) and Φ1s(rB). It is non-

zero since they are NOT ORTHOGONAL; they are centered on

different origins.

Now for the A±. We use again the electronic Hamiltonian that

we used in (11):

Ĥel = −1

2
∇2
r −

1

rA
− 1

rB
+

1

R
First we recall from the treatment of atomic hydrogen that:−1

2
∇2
r −

1

ri

 Φ1s(ri) = E1sΦ1s(ri) i = A,B (12)

We want:

A± =
∫ 1√

2
[Φ∗1s(rA)± Φ∗1s(rB)] Ĥel

1√
2

[Φ1s(rA)± Φ1s(rB)] dτ .

that we will re-write as:

A± =< Ĥel >=
1

2
[HAA +HBB]±HAB (13)

where

HAA =
∫

Φ∗1s(rA)ĤelΦ1s(rA)dτ

= E1s (Energy of H atom)

+
1

R

∫
Φ1s(rA)Φ1s(rA)dτ (internuclear repulsion)

−
∫

Φ∗1s(rA)
1

rB
Φ1s(rA)dτ (The Coulomb Integral, J(R))

= E1s +
1

R
− J(R)
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where J(R) is due to the interaction with the other atom, B.

There is a similar term HBB from the other atom, B: Also:

HAB = HBA =
∫

Φ∗1s(rA)ĤelΦ1s(rB)dτ (14)

and

HAB = ±


E1s +

1

R

 I(R)−
∫

Φ∗1s(rA)
1

rA
Φ1s(rB)dτ︸ ︷︷ ︸

‘K’ exchange integral


.

So

HAB = ±
E1s +

1

R

 I(R)∓K(R) . (15)

Putting these results together, the electronic energy is:

E± = A±/N±

= E1s +
1

R︸ ︷︷ ︸
H atom +

Coulomb repulsion

+
−J ∓K

1± I
.

The integrals J,K, I depend parametrically on r and can be eval-

uated analytically. It turns out that:

−J = Re−2R > 0.

K = (1 +R)e−R > 0.

I = (1 +R + R2

3 )e−R and 0 < I < 1 so 1± I > 0.

FORM OF E±(R)

See figure in text book or lecture notes.

1. As R→∞, J,K, I → 0, so: E− ' E+ → E1s + 1
R
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2. The splitting 2K(R)/(1± I) lowers E+ and increases E−.

3. As R → 0 E± → ∞ because of repulsion between

nuclei.

4. E+(R) has a minimum. This leads to a stable molecule.

Wavefunction associated to this eigenvalue is a BONDING

ORBITAL.

E−(R) is higher than the energy of the separated atoms.

Wavefunction associated to this eigenvalue is an ANTIBOND-

ING ORBITAL. If electron is excited to this state, molecule

falls apart.

5. FOR STABLE MOLECULE:

De = DISSOCIATION ENERGY,

Re = EQUILIBRIUM DISTANCE OF NUCLEI.

5.5 THE H2 MOLECULE

See textbook or lecture notes for diagram of coordinates for H2.

As for H+
2 :

• Electronic wavefunction first, B-O approximation.

• Covalent bond (nuclei identical so share electron).

• Also have symmetry with respect to exchange of nuclei.

But unlike H+
2 :

• 2 electrons, must consider Pauli Principle: ψ must be anti-

symmetric w.r.t. exchange of electrons.
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The electronic Hamiltonian for H2 is:

Ĥel = −1

2
∇2

1 −
1

2
∇2

2︸ ︷︷ ︸
K.E. of elec-

trons 1 and 2

− 1

rA1
− 1

rA2
− 1

rB1
− 1

rB2︸ ︷︷ ︸
Nucleus-electron

attraction

+
1

R
+

1

r12︸ ︷︷ ︸
Repulsion be-

tween nuclei

and between

electrons

Of course, the wavefunction must include SPIN:

ψS,T = ψ(ri;R)χS,T (16)

where S = 0 or 1 since we have two electrons each with spin 1
2.

The χS,T are the same as we obtained for He. So,

if ψ(ri;R) is anti-symmetric w.r.t. exchange of e− then χ must

be symm. ⇒ SPIN TRIPLET.

if ψ(ri;R) is symmetric w.r.t. exchange of e− then χ must be

anti-symm. ⇒ SPIN SINGLET.

As for H+
2 we can build the low-lying states of H2 from atomic

orbitals of 1s hydrogen. The antisymmetric ψ=ψ−, will give us a

triplet state:

ψT ' 1√
2

[Φ1s(rA1)Φ1s(rB2)− Φ1s(rA2)Φ1s(rB1)]χ
T (17)

and the symmetric ψ=ψ+, will give us a singlet state:

ψS ' 1√
2

[Φ1s(rA1)Φ1s(rB2) + Φ1s(rA2)Φ1s(rB1)]χ
S (18)

As before

E±(R) =
∫
ψ∗S,T Ĥelψ

S,Tdτ∫
ψ∗S,TψS,Tdτ

E+ → ψS, E− → ψT
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Working through these integrals, like for H+
2 , gives:

E± = 2E1s

↓
2 hydrogen

atoms

+
1

R
↓

Nuclear

repulsion

+
J

1± I2
± K

1± I2
(19)

OVERLAP:

I(R) =
∫

Φ∗1s(rA1)Φ1s(rB1)dτ . (20)

I < 1

So 1± I2 > 0 is always POSITIVE.

COULOMB:

J(R) =
∫
|Φ1s(rA1)|2

 1

r12
− 1

rA2
− 1

rB1

 |Φ1s(rB2)|2dτ (21)

In general, J represents a POSITIVE contribution.

EXCHANGE:

K(R) =
∫

Φ∗1s(rA1)Φ
∗
1s(rB2)

 1

r12
− 1

rA2
− 1

rB1

 Φ1s(rA2)Φ1s(rB1)dτ

(22)

which, in general, represents a NEGATIVE contribution.

From the previous analysis, the behaviour depends on the sign of

±K, the exchange term.

See text books or lecture notes for diagram of Eel for H2

So SINGLET lies below TRIPLET.

Compare and contrast H2 (simplest two electron molecule) with

Helium (simplest two electron atom).
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For Helium, triplet lies below singlet.

Why ? The triplet in Helium is lower energetically because elec-

trons avoid each other, ψ → 0 as r12 → 0, so there is a low

probability of overlap.

For the molecule, the triplet ψ has a zero at the midpoint of H2.

(similar to H+
2 in figure 5.1). There is a low probability of finding

an electron between protons in the antisymmetric ψ (triplet spin)

case. For a molecule, the most important factor for stability is

that electrons should neutralize mutual repulsion of nuclei, i.e.,

the 1/R term. So the molecules are more stable if there is a

significant probability that the electrons are between the nuclei.
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5.6 NUCLEAR MOTION OF MOLECULES

A molecule with N nuclei has 3N nuclear degrees of freedom and

three types of motion:

• TRANSLATION—Free motion as a whole in x, y, z direction:

3 degrees of freedom.

• ROTATION—Rotation about centre of mass. In general 3

rotational axes for a solid body but only 2 for a linear molecule

(3 or 2 degrees of freedom).

• VIBRATION—Nuclei vibrate about equilibrium positions: 3N−
6 (or 3N − 5 for linear molecules) vibrational modes.

5.7 NUCLEAR MOTION OF A DIATOMIC MOLECULE

Consider a diatom AB and its nuclear Schrödinger equation (10):
− h̄

2

2µ
∇2
R + Eel(R)

 ν(R) = Eν(R) .

− h̄
2

2µ
∇2
R = − h̄

2

2µ

1

R2

∂

∂R

R2 ∂

∂R


︸ ︷︷ ︸

Radial

+
Ĵ2

2µR2︸ ︷︷ ︸
Angular

(23)

with Ĵ2 same as L̂2 in section 2. Solution with separate radial

and angular coordinates:

νvJ(R) =
Fv(R)

R
YJMJ

(θ, φ) . (24)
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5.7.1 ROTATION

The spherical harmonics, YJMJ
.angular momentum quan-

tum numbers J and MJ . Eigenfunctions of:

Ĵ2YJMJ
(θ, φ) = h̄2J(J + 1)YJMJ

(θ, φ) (25)

The molecule behaves like a rigid rotor that rotates about an

axis perpendicular to the internuclear axis through the centre of

mass.

The eigenvalues associated to the rotational motion are:

Erot =
h̄2J(J + 1)

2µR2
e

= BJ(J + 1) (26)

where B is the ROTATIONAL CONSTANT:

B =
h̄2

2µR2
e

=
h̄2

2Ie
and Iemoment of inertia

If J=0, then Erot is zero.

5.7.2 VIBRATIONS

If we substitute solution (24) in the nuclear Schrödinger equation:

− h̄
2

2µ
∇2
R + Eel(R)

 Fv(R)

R
YJMJ

= E
Fv(R)

R
YJMJ

,

and take into account that:

− h̄
2

2µ

1

R2

∂

∂R

R2 ∂

∂R

 Fv(R)

R
= − h̄

2

2µ

1

R

d2Fv(R)

dR2
.
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we can eliminate the YJMJ
and the 1/R term to get:−h̄2

2µ

d2

dR2
+
h̄2J(J + 1)

2µR2
+ Eel(R)


︸ ︷︷ ︸

' K.E. + Rotational energy + electronic

energy

Fv(R) = E︸︷︷︸
Total

energy

Fv(R) .

(27)

The functions Fv(R), solutions of (27), describe the vibrational

motion of the molecule. For a stable molecule, Eel(R) has a min-

imum at R=Re (see figure 5.2) and supports quantum states.

We can show that for motion close to equilibrium i.e. R ' Re,

Eel(R) ∼ parabolic ⇒ motion ∼ harmonic.

We can expand Eel(R) as a Taylor series about R = Re:

Eel(R) = Eel(Re)+(R−Re)
dEel

dR

∣∣∣∣∣∣
R=Re

+
(R−Re)

2

2

d2Eel

dR2

∣∣∣∣∣∣∣
R=Re

· · · .

Since R−Re is small, we neglect terms higher than quadratic.

At the minimum,
dE

dR

∣∣∣∣∣∣
R=Re

= 0

So, to 2nd order,

Eel(R) = Eel(Re) +
1

2
k(R−Re)

2 , (28)

i.e. the potential in which the nuclei move is a constant plus a

harmonic term ≡ 1
2kx

2 where k is the harmonic oscillator/force

constant:

k =
d2E

dR2

∣∣∣∣∣∣∣
R=Re

.

We can now re-write equation (27):− h̄
2

2µ

d2

dR2
+ Eel(Re) +

1

2
k(R−Re)

2

Fv(R) = (E − Erot)Fv(R)



5 MOLECULES 16

Rearranging:− h̄
2

2µ

d2

dR2
+

1

2
k(R−Re)

2


︸ ︷︷ ︸

Quantum harmonic oscillator

Fv(R) = (E − Erot − Eel(Re))Fv(R)

= EvFv(R) .

Hence, we have:

Ev = h̄ω

v +
1

2

 , v = 0, 1, 2, . . . ,

with v the vibrational quantum number. Ev = h̄
√
k
µ

(
v + 1

2

)

is the energy of a harmonic oscillator of frequency ω =
√
k
µ. For

v = 0

Ev =
1

2
h̄ω

is referred to as the ZERO-POINT ENERGY. The energy of a

quantum harmonic oscillator, unlike the classical harmonic oscil-

lator, is NEVER zero.

ENERGY OF A DIATOMIC MOLECULE

E ' Eel︸ ︷︷ ︸
electronic

energy at

equilibrium

≈ 10eV

+ BJ(J + 1)︸ ︷︷ ︸
Rotational en-

ergy ≈ 0.001eV

+

v +
1

2

 h̄ω︸ ︷︷ ︸
Vibrational en-

ergy ≈ 0.1eV

' Eel + EvJ

This is the total energy for an ideal diatomic molecule. For a real

molecule, this is valid as long as:
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1. v is small: the harmonic approximation is best near the bot-

tom of the well

2. J is also small: centrifugal distortion tends to stretch the

molecule and lower the rotational energy.

5.8 REAL MOLECULES

The energy expression. eq. 29, applies only to an ideal molecule.

Real molecules deviate from ideal case:

1. Potential Eel is not really parabolic, except approximately,

for low v. For high v, corrections due to the anharmonicity

of the potential are needed.

2. The rotational constant B depends on v. Since molecules

vibrate, effective bond-length 6= Re.

3. Centrifugal distortion. As J increases, internuclear distance

STRETCHES. In effect this lowers the rotational energy and

EJ becomes:

EJ = BvJ(J + 1)−DvJ
2(J + 1)2︸ ︷︷ ︸

centrifugal

distortion

.

This is important for high J ≥ 10

5.8.1 MORSE POTENTIAL

For many covalent molecules (e.g. H2, H+
2 ) a better description of

the potential well provided by Ee is given by the empirically de-

termined Morse potential. (see figure in text books or lecture

notes)
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Re= equilibrium bondlengh

De= potential minimum

D0= dissociation energy for v=0

This potential has the form:

V (R) = De

(
e−2α(R−Re) − 2e−α(R−Re)

)
(29)

De, Re and α are constants for a given molecule. Note that V (R)

is attractive at large R, has a minimum and then becomes re-

pulsive at short distances. The parameter α determines how

fast the potential energy falls off with distance. It can be re-

lated to the force constant, k, by expanding V (R) in powers of

(R−Re):α =
√

1
2
k
De

5.9 IONIC BONDS

Ionic bonds occur for alkali-halogen molecules. Alkalies (e.g., Li,

Na, Rb, Cs) have one electron outside closed shell. Halogens

are one electron short of being closed shell. Example: LiF. We

consider two properties of atoms:

1. Electron affinity, A

This is the binding energy of an additional electron F → F−:

A(F) = -3.4 eV = energy released, Li → Li−: A(Li) =

-0.62 eV

2. Ionisation energy, I .

Energy ‘cost’ of removing outer electron

I(Li) = 5.4 eV

I(F) = 17.4 eV → much more energy needed
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Energy cost of removing an electron from Li and adding it to F is

E = 5.4 eV − 3.4 eV = 2.0 eV = 0.074 a.u. .

That is, we need to provide energy to ’transfer’ an electron from

Li to F (notice that if I(Li)< A(F) then the process would be

exothermic). But, we now have Li+F− and the ions attract each

other. For what R does the Coulomb attraction overcome the

energy loss due to ionisation? When:

E = 0.074 a.u. =
1

R
→ R ∼ 13.6 a.u

Net energy exchange will be zero if R ∼ 13.6 a.u. Any closer and

it will be negative, i.e., Li+F− is more stable than LiF.

If we want the dissociation energy, i.e., the energy required to

separate Li and F as NEUTRAL atoms, then:

D = 0.29 + (I(Li)− A(F)) = 0.29− 0.074 = 0.206 a.u.

In reality, most bonds are not purely ionic. For LiF, the lithium’s

electron still maintains some probability of remaining on Li.

5.10 SPECTRA OF DIATOMIC MOLECULES

5.10.1 ELECTRONIC TRANSITIONS

Diatomic molecules have axial symmetry, not spherical symmetry

as in atoms. Hence, the electronic eigenfunctions are simultaneous

eigenfunctions of Ĥel and L̂z, i.e., L̂z gives us the good quantum

number:

L̂zψ = MLh̄ψ = ±Λh̄ψ (30)

Λ is the absolute value in atomic units of the projection of the

total electronic angular momentum on the internuclear axis.
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Λ = 0 → Σ

Λ = 1 → Π

Λ = 2 → ∆

Λ = 3 → Φ

.......

If we want to label a one-electron function (a molecular orbital) we

use λ=0,1,2,... → σ, π, δ, etc.. The spin multiplicity is indicated

as a superscript,
2S+1Λg,u

where g and u denote gerade (symm.) or ungerade (anti. symm.)

and only applies for homonuclear molecules. Molecular electronic

transitions are always accompanied by rotational and vibrational

transitions. The selection rules for changes in the elec-

tronic state are:

∆Λ = 0,±1

g → u but not g → g or u→ u

∆S = 0

5.10.2 PURE ROTATIONAL TRANSITIONS

Rotational transitions can take place between rotational states

corresponding to the same electronic state (see figure 5.3). Only

relevant to molecules with permanent electric dipole moment (e.g.

LiF, HCl, but not homonuclear diatomics).

Pure ROTATIONAL transitions occur at MICROWAVE frequen-

cies. The selection rules are:

∆J = ±1 .
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Molecules such as O2, H2 and H+
2 have no dipole: They have a

much weaker spectrum of ‘forbidden’ ∆J = 2 transitions. (NON-

LINEAR MOLECULES can have ∆J = 0).

Frequencies of transition lines are given by:

Erot(J)− Erot(J − 1)

h
=

2BJ

h

so the spectral lines are equally spaced with separation 2B/h

(see figure 5.4).

5.10.3 VIBRATION-ROTATION SPECTRA

VIBRATION-ROTATION transitions occur at INFRA RED fre-

quencies (see figure 5.3).

For harmonic approximation, the selection rules are:

∆v = ±1 |J − J ′| = 1

(Transitions with ∆v = ±2,±3, ... occur but are much less likely)

Ro-vibrational transitions give rise to spectra with 2 branches with

a line missing at h̄ω:

∆J = +1 J −→ J + 1 (‘R’ BRANCH)

∆J = −1 J −→ J − 1 (‘P’ BRANCH)

Lines are equally spaced by 2B/h except for the gap due to ∆J=0

being forbidden (see figure 5.4).

5.10.4 ELECTRONIC-VIBRATIONAL-ROTATIONAL

These transitions are usually observed in the ULTRA VIOLET

(see figure 5.3). We have discussed the selection rules for the
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electronic part in section ( 5.10.1). For the nuclear part we have:

∆v can take any value.

∆J = 0, ±1

But the bond length, and hence the rotational constant, B, can

differ substantially for the initial and final states. Hence:

∆EJ = [BJ(J + 1)−B′J ′(J ′ + 1)]

does not lead to evenly spaced lines. Since,

En, Ev � Erot

this just spreads the electronic-vibration frequency into a BAND

of closely spaced lines (see figure 5.4).

5.10.5 FRANCK-CONDON PRINCIPLE

In most cases, the electron ‘jumps’ so quickly in electronic transi-

tions that nuclei cannot relax. If this is the case, the distribution

of final vibrational states after the transition takes place is deter-

mined by the OVERLAP of vibrational wavefunctions between

the ground and excited state (see figure 5.5).

The overlap between v′′ = 0 and v′ = 0 is very small so transitions

are very weak.

Transition v′′ = 0 → v′ = n is big as the v′ = n state is large at

inner turning point.

More formally, the transition probability is proportional to:

Iv′′v′ =
[∫ ∞

0
ν∗v′′(R)νv′(R)dτ

]2
where νv′′ is the vibrational wavefunction of the lower state and

νv′ that of the upper state.

I is known as the FRANCK-CONDON FACTOR.


