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4 ATOMS AND RADIATION

4.1 ALLOWED AND FORBIDDEN TRANSITIONS

Transitions can occur between quantum states by SELECTION

RULES. The main ones are the DIPOLE SELECTION RULES.

Definition of electric dipole moment P = er, can be permanent or

induced. The dipole of an optically active electron interacts with

electromagnetic radiation, i.e.

E(t) = E0 exp[iωt]

The Hamiltonian will have an additional term:

H = H0 + V , (1)

where H0 is the unperturbed Hamiltonian and V = −P ·E is a

time-dependent perturbation, has a small effect compared to H0.

Consider z-part of P = er, i.e Vz = er cos θE0z exp[iωt], (E0z =

z component of E0 and z = r cos θ).

From TIME-DEPENDENT PERTURBATION THEORY we can

derive FERMI’S GOLDEN RULE:

Transitions occur between two quantum states i → f with a

probability, Tif , which is given by the square of the matrix element

of the perturbation:

Tif ∝
∣∣∣∣∫ Ψ∗

fV Ψidτ
∣∣∣∣2

∝
∣∣∣∣∫ Ψ∗

fr cos θΨidτ
∣∣∣∣2 . (2)

(Integral is independent of e and Ez, and exp . terms vanish after

time integral.).
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• Tif = 0 the transition is forbidden;

• Tif 6= 0 the transition is allowed.

For an atomic state of a one-electron atom, the transition nlm→
n′l′m′.

Tif =
∣∣∣∣∫ ∞0 R∗nl(r)rRn′l′(r)r

2dr
∣∣∣∣2︸ ︷︷ ︸

radial

×
∣∣∣∣∣
∫ 2π

0

∫ π
0
Y ∗
lm cos θ Yl′m′ sin θ dθdφ

∣∣∣∣∣
2

︸ ︷︷ ︸
angular

.(3)

Radial integral which equals some constant, C, non-zero, no se-

lection rule.

Spherical Harmonics are orthogonal:∫ 2π

0

∫ π
0
Y ∗
lm(θ, φ) Yl′m′(θ, φ) sin θ dθ dφ = δll′ δmm′ . (4)

and using:

cos θ Ylm = AYl+1m +BYl−1m , (5)

where A and B are some constants. So∫
Y ∗
lm cos θ Yl′m′ dΩ = A

∫
Y ∗
lmYl′+1m dΩ +B

∫
Y ∗
lmYl′−1m dΩ (6)

which, by orthogonality of the spherical harmonics, implies l′ =

l± 1 and m′ = m. A similar analysis, using x = r sin θ cosφ and

y = r sin θ sinφ gives the ∆m = ±1 rule.

V does not depend on Ŝ , so the spin is not changed by the

transition and ∆s = 0.

Remember that the V ∝ r. Now r has odd parity. Integrand

in Tif must be even for Tif to be non-zero. So product Ψ∗
fΨi to

be odd and therefore both states have to be of opposite parity.
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Electric dipole selection rules one-electron atom:

∆l = ±1,∆m = 0,±1, ∆s = 0, and states of opposite parity

Furthermore, if the spin-orbit interaction is significant then ∆j =

0,±1 but not j = 0 → j′ = 0.

Note that these are not strict selection rules. Other transitions can

occur which would follow the magnetic dipole or electric quadrupole

selection rules. Transition probabilities will be very small com-

pared to those for electric dipole transitions.

See figure 4.1 and 4.2 of transitions in H and He.

4.2 EINSTEIN A AND B COEFFICIENTS

Consider the following fundamental photon-atom processes:

Spontaneous emission: Decay of an excited state to a lower

state with emission of one photon energy hν equal to energy dif-

ference between states.

Absorption: Absorption of a photon with energy hν equal to

energy difference of states between which the electron makes a

transition.

Stimulated emission: A photon with energy hν ’provokes/induces’

the decay of the atom and two photons are emitted same fre-

quency, ν, and are COHERENT, i.e., they are generated in phase.

Consider an ensemble of atoms, N1 in a state with energy E1 and

N2 in a state with energy, E2. When first exposed to a thermal
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radiation field of spectral energy density, U(ν), the population,

N1 and N2 will be time-dependent.

The growth and decay of the upper and lower level populations

can be expressed via the following coupled first-order differential

equations

dN2

dt
= CU(ν12)N1︸ ︷︷ ︸

absorption

− [A +BU(ν12)]N2︸ ︷︷ ︸
spontaneous +

stimulated emission

(7)

dN1

dt
= [A +BU(ν12)]N2 − CU(ν12)N1 . (8)

After a sufficient amount of time, equilibrium is reached and

dN1

dt
=
dN2

dt
→ CU(ν12)N1 = [A +BU(ν12)]N2 . (9)

Assuming the atoms to have a Maxwell-Boltzmann distribution

gives (for a system in thermal equilibrium at temperature, T ):

N1

N2
=

exp[−E1/kT ]

exp[−E2/kT ]
= exp[hν12/kT ] , (10)

where hν12 = E2 − E1. So we can write

U(ν12) =
A

Cehν12/kT −B
=

A/B

(C/B)ehν12/kT − 1
. (11)

Comparing Eq. (11) with the spectral energy density characteristic

of a black-body field (Planck’s formula), i.e.,

U(ν12) =
8πhν3

12

c3
1

ehν12/kT − 1
;

Hence we can identify

C = B and A =
8πhν3

12

c3
B. (12)
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A is known as the EINSTEIN COEFFICIENT for SPONTA-

NEOUS EMISSION.

B is the EINSTEIN COEFFICIENT for STIMULATED (IN-

DUCED) EMISSION or ABSORPTION (we do not use C any-

more).

These coefficients can be related to the transition probabilities

evaluated using Fermi’s Golden Rule (see Bransden and Joachain).

4.2.1 LIFETIMES

So even an isolated excited atom (i.e., without radiation to stimu-

late it) will spontaneously decay to a lower state with a probability

Pif = Aif , (13)

whereAif is the Einstein coefficient for spontaneous emission from

state i to state f .

An excited state, i, of an atom has a finite LIFETIME:

∆τi =
1∑

f Aif
∼ 10−9 s for electric-dipole transitions . (14)

By the Heisenberg uncertainty principle, there is an associated

energy uncertainty:

∆τ∆E ≥ h̄/2 (15)

So, spectral lines are not perfectly sharp; even under the best ex-

perimental conditions they have an intrinsic energy width, ∆E ≈
h̄

2∆τ
. Therefore if we look at the spectra we have frequency width,

∆ν, the natural line-width (see figure 4.3).
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4.2.2 METASTABLE LEVELS

If, for a level i, spontaneous decay is forbidden by electric dipole

transitions, i.e. Aif = 0 for ALL f , then the level is METASTABLE.

Other possible transitions (magnetic dipole, electric quadrupole)

but probability much smaller, leads to a longer lifetime.

E.g. for a 2s level in H, the transition 2s→1s by electric dipole

is forbidden as ∆l = 0.∆τ ∼ 0.14 s as compared to 10−9 s for

typical electric-dipole.

4.3 LASER (Light Amplification by the Stimulated Emission
of Radiation)

Consider two level system.

Boltzmann distribution:
N1

N2
= e(E2−E1)/kT , so N1 > N2 and

incoming photon with energy E = hν12 is more likely to be ab-

sorbed.

However, if N2 > N1, we have POPULATION INVERSION, and

an incoming photon can provoke stimulated emission, two photons

phase or ‘ coherent’. The two photons can go on to stimulate

another 2 atoms, then 4, then 8. . . , etc. A cascade builds up,

resulting in an intense, coherent beam of monochromatic light.

To get population inversion, we can use 3 level systems where the

middle level is a metastable level.
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1. The atoms are pumped from level (1) to level (3) with photons

of frequency ν13.

2. Atoms accumulate in level (3) which decays spontaneously

down to level (2).

3. Atoms accumulate in level (2) which is metastable.

4. Levels (2) and (1) now have population inversion.

5. A beam of ν12 photons can result in laser light at frequency

ν12.

4.4 X-RAY SPECTRA OF ATOMS

So far we have been concerned with the outer, (weakly-bound)

electrons which yield optical (visible), λ ∼ 10−6m, or uv spectra,

λ ∼ 10−7 − 10−8m.

But transitions of inner electrons yield X-rays of wavelength λ ∼
0.1–10.0 Å (10−9 m) corresponding to energies 1–100 keV.

They may be produced by bombarding a high Z target (anode)

with energetic e− from a heated cathode.

Types of X-ray spectra are:

1. CONTINUOUS X-rays. Fast moving electrons deflected and

slowed down in the Coulomb field of heavy atoms, emits ra-

diation giving rise to ‘white’ or continuous (all frequencies)

radiation, known as Bremsstrahlung radiation.

The electron initial and final energies, Ei and Ef , are not

quantized and a continuous spectrum is seen (see figure 4.4).

The limiting case occurs when an electron gives up all its
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energy, i.e., νmax = Ei/h or λmin = hc/Ei, and this is known

as absorption edge.

2. CHARACTERISTIC X-ray spectra. Transitions of inner elec-

trons. Electron excited from an inner shell, it leaves a ‘hole’

which another electron from a higher state energy level can

decay into by emission of an X-ray photon, characteristic of

the atom and

νif =
Ei − Ef

h
= RZeff

 1

n2
f

− 1

n2
i

 , (16)

where Zeff = Z−S is the effective charge and S the screening

constant.

They form series (see figure 4.4):

Transitions to nf = 1 are called the K-series

Transitions to nf = 2 are called the L-series

Transitions to nf = 3 are called the M-series

Within each series, ∆n(= ni − nf) = 1 has subscript α,

∆n = 2 has subscript β, ∆n = 3 has subscript γ, etc.

So have, e.g., Kα, Kβ, Kγ . . . .

Moseley Law (empirical)

√
νif = Cn(Z − S) (17)

where Cn is independent of Z and S is different for different

series. This work led Moseley to identify Z the atomic number

with the nuclear charge and enabled him to predict unknown

elements ( Z=43, 61, 72 and 75).
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4.5 ATOMS IN EXTERNAL FIELDS

Consider the effects of externally applied fields (e.g., in the

laboratory or a star, etc):

Ĥ = Ĥ0(r1, r2, . . . , rN) + ĤSL + VB + VE , (18)

where

VB = Interaction with magnetic field (ZEEMAN EFFECT)

and

VE = Interaction with electric field (STARK EFFECT) .

We will restrict ourselves to the perturbative case:

Ĥ0 � VB, VE, ĤSL

so that these terms represent simply a small shift, ∆E, in the

energy levels. First-order perturbation theory gives:

∆E '
∫
ψ∗V ψdτ

ETOT = E0 + ∆E (19)

where Ĥ0ψ = E0ψ and E0 � ∆E

4.6 ATOMS IN MAGNETIC FIELDS (ZEEMAN EFFECT)

Generally the perturbative limit is good: E0 � ∆E. For an

atom in a low-lying state, n ∼ 1 and E0 ∼ 1 a.u. In this case,

∆E ≈ E0 for B = 100 000 T. The strongest laboratory fields are

of the order 10–100 T. Very strong magnetic fields are only found

in, e.g., white dwarf stars. We describe the interaction using the

vector-model of the atom and introduce the quantum mechanical

operators when required.
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4.6.1 NORMAL ZEEMAN EFFECT: VB � ĤSL

If VB � ĤSL then L and S decouple (PASCHEN-BACK limit)

and both precess independently about the B-field direction (see

diagram in books). The precession arises from the torque due to

the B-field, τ ∝ L×B.

Therefore in this case l, s, ml andms are good quantum numbers.

The potential energy arising from a magnetic moment, µX , is:

VB = −µX ·B . (20)

The total the magnetic moment arises from the orbital angular

momentum and the spin angular momentum, µX = µL +µS. We

can take the z-axis to lie along the direction of B and introduce

the operators in equation (20):

VB =
µB
h̄
B

(
L̂z + 2Ŝz

)
. (21)

So that, in the case of a one-electron atom and taking ψ as being

a normalised eigenfunction, we find:

∆E =
∫
ψ∗
µB
h̄
B

(
L̂z + 2Ŝz

)
ψdτ =

µB
h̄
B

∫
ψ∗h̄ (ml + 2ms)ψdτ

= µBB (ml + 2ms) (22)

Remember that µB = 5.788× 10−5 eV/T so the effect is small.

In the case of multi-electron atom we get:

∆E = µBB (ML + 2MS) (23)

4.6.2 ANOMALOUS ZEEMAN EFFECT: VB � ĤSL

B-field weak to uncouple L and S which coupled by spin-orbit

interaction into J =L+ S, and both L and S precess about J
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which itself precesses about B. Now j, l, s and mj are good

quantum numbers. (see diagrams in books)

The interaction is

VB =
µB
h̄
B · (L + 2S) =

µB
h̄
B · (J + S) . (24)

Taking the B-field along the z-axis the first part is:

∆EA =
∫
ψ∗
µB
h̄
BĴzψdτ = µBBmj. (25)

For the second part

∆EB =
∫
ψ∗
µB
h̄
B · Sψdτ (26)

S precesses around J with a constant projection on J equal to

SJ , other components average to zero and therefore we only need

to consider the vector with length SJ in the direction of J , i.e

SJ = |SJ |Ĵ =

S.J
J

 J
J

 =

S.J
J2

 J. (27)

Now introducing the quantum mechanical operators and using the

relation Ĵ = L̂ + Ŝ to write:

Ĵ .Ŝ =
1

2
[Ĵ2 + Ŝ2 − L̂2] (28)

we get:

∆EB =
∫
ψ∗
µB
h̄
B

Ĵ
2 + Ŝ2 − L̂2

2Ĵ2

 Ĵzψdτ, (29)

which can be shown ( see Brehm & Mullin or Bransden & Joachain)

to be equal to

∆EB = µBBmj

j(j + 1) + s(s + 1)− l(l + 1)

2j(j + 1)

 . (30)
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Adding the two contributions, the total energy shift due to the

anomalous Zeeman effect is:

∆E = µBBmjg (31)

where g is the Landé-factor given by

g = 1 +

j(j + 1) + s(s + 1)− l(l + 1)

2j(j + 1)

 . (32)

For the many-electron atom case we get a similar result with

g = 1 +

J(J + 1) + S(S + 1)− L(L + 1)

2J(J + 1)

 . (33)

EXAMPLE: SODIUM

Consider the 3 2P1/2,3/2 → 3 2S1/2 transition.

• If the external magnetic field is zero, B = 0, then we have spin-

orbit coupling only. Using the spin-orbit notes, the possible values

of J and energy shifts for the P levels are

J = 3/2 ∆ESL(3/2) = A/2

J = 1/2 ∆ESL(1/2) = −A

and then ∆EP = 3A/2 as given by Landé Interval Rule. For S

state J = 1/2, there is no splitting and ∆ES = 0.

From the selection rules we find two possible transitions, 3 2P3/2 →
3 2S1/2 and 3 2P1/2 → 3 2S1/2, gives rise to doublet lines.

• If the external magnetic field is weak then we need to include

the spin orbit interaction.

∆E = µBBMJg (34)
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and the magnetic Landé g-factor can take the following values:

3 2S1/2 MJ = ±1

2
and g = 2.

3 2P MJ = ±1

2
( for J = 1

2 and 3
2) giving g = 2

3 and MJ =±3

2
( for J = 3

2) giving g = 4
3.

Allowed transitions have ∆MJ = 0,±1. This means that the two

P3/2, P1/2 −→ S1/2 D-lines in a weak magnetic field split into 10

components. Without the selection rule we would obtain 12 lines

(6 upper states −→ 2 lower states)

• If the external magnetic field is strong, neglect the spin orbit

interaction.

∆E = µBB (ML + 2MS) (35)

For the 3 2S, we have ML=0 and MS =±1

2
giving (ML + 2MS) =

±1.

For the 3 2P, we haveML= 0,±1 andMS =±1

2
giving (ML + 2MS) =

±2,±1, 0.

The selection rules require ∆ML = 0,±1 and ∆MS = 0. This

gives rise to six possible lines. However, only three are seen be-

cause pairs of the transitions have the same frequencies.
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4.7 HYPERFINE STRUCTURE

Protons and neutrons are also fermions with a spin 1/2. Nuclei

have a net spin, I and associated with a magnetic moment,

µI = gNµN
I
h̄ , where µN is the NUCLEAR Bohr magneton which

is very small: µN = me
mp
µl ' µB

1836. The value taken by the g-

factor, gN , depends on the nucleus. µI produces an analogue of

spin-orbit coupling with energy splittings proportional to I · J
and I ·S. Thus, we have HYPERFINE SUB-LEVELS with total

angular momentum:

F = J + I , (36)

e.g., ground state of hydrogen, 1s (j = 1/2,s = 1/2 and I =

1/2)) has now two levels labelled F=1 and F=0. For transitions

between these levels,∆E = hc
λ = 0.047 cm−1 which corresponds to

λ = 21 cm (radio line used to probe interstellar hydrogen clouds).

4.8 ATOMS IN ELECTRIC FIELDS: THE STARK EFFECT

Slitting of the energy levels in a static electric field. We treat the

external electric field, Eext, as a small perturbation

VE � Z/r . (37)

If we consider the effect of the field on two opposite charges sep-

arated by a distance r, we find that the extra small term in the

Hamiltonian is:

VE = −µ ·Eext , (38)

where µ = −er is the ELECTRIC DIPOLE MOMENT. If the

field is taken to be along the z-axis, then

VE = −(−er) ·Eext = +ezEext . (39)
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Note: VE is positive, i.e. repulsive and it will decrease the binding

energy.

4.8.1 QUADRATIC STARK EFFECT

The Quadratic Stark Effect arises in atoms which have no intrinsic

dipole moment, which is the case for most atoms. A dipole implies

some charge polarization along the z-direction. E.g. an atom in

an s-state:

Ψ = R(r)Y00(θ, φ). Charge distribution (∝ |Ψ|2) is spherically

symmetric. But, the field itself polarizes the electron distribution,

inducing a dipole moment proportional to Eext:

µ = −αEext; , α = polarizability of the atom . (40)

So the potential arising from the electric field is

VE = −µ · Eext = αE2
ext (41)

which is a term varying quadratically with the field, so will ∆E.

For the ground state of H (1s) and a field Eext ≈ 108 V/m we find

∆E ≈ 2.5× 10−6 eV.

4.8.2 LINEAR STARK EFFECT

It occurs for atoms with an intrinsic dipole moment, µE, such as

excited states of H and H-like atoms. For these atoms there is

l-degeneracy: The eigenstates are formed from superpositions of

l-orbitals, e.g. n = 2, m = 0:

Ψ = R20(r)Y00 +R21(r)Y10

=
1√
4π

(
R20(r) +R21(r)

√
3 cos θ

)
, (42)

(43)
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which means that

|Ψ|2 = a︸︷︷︸
symmetric

+ b cos θ︸ ︷︷ ︸
dipole

+ c cos2 θ︸ ︷︷ ︸
symmetric

(44)

where a, b and c are functions of r alone. This, therefore, has a

dipole so that ∆E ∝ Eext, i.e. linear.


