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3 MANY-ELECTRON ATOMS

3.1 MANY-ELECTRON HAMILTONIAN

For a one-electron atom, the Hamiltonian, in atomic units is:

Ĥ = −1

2
∇− Z

r
(1)

For an N -electron atom, the Hamiltonian, in atomic units is:

Ĥ =
N∑

i=1

[
−1

2
∇2

i −
Z

ri

]
︸ ︷︷ ︸

KE + attraction of
nucleus and i th e−

+
∑
i,j

i>j

1

rij︸ ︷︷ ︸
e−–e− Coulomb
repulsion, non-
central

=
N∑

i=1
ĥi(ri) +

∑
i,j

i>j

1

rij
(2)

with rij = |ri − rj|

and ĥi(ri) = −1
2∇

2
i − Z

ri
.

The Coulomb repulsion term means the Hamiltonian is no longer an-
alytically soluble since we cannot use separation of variables.

NOTE: We have to write the 1/rij term carefully to avoid ‘double-counting’.

3.2 APPROXIMATE SOLUTIONS

3.2.1 INDEPENDENT PARTICLE MODEL

As a first approximation, we neglect 1/rij entirely. Then,

Ĥ(r1, r2, . . . , rN) =
N∑

i=1
ĥi(ri) . (3)

Ĥ separates into N one-electron Hamiltonians ĥi,
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ĥi(ri)φ(ri) = Eiφ(ri) (4)

which in turn are separable. We have N hydrogen-like solutions.

For example, for N = 2, the helium ground state, with Z = 2

E = En=1 + En=1 = − Z2

2n2 −
Z2

2n2 = −4 a.u. (5)

The true energy is E = −2.9 a.u. The neglect of the inter-electron repul-
sion yields a value which is too negative. One can roughly estimate the
magnitude the inter-electron repulsion as the average separation of the
helium n = 1 electrons is 1 a.u.; hence the average repulsive energy is

Er =
∫

Ψ∗ 1

r12
Ψdτ ≈ 1

< r12 >
≈ 1a.u. (6)

E +
1

< r12 >
∼ −3 a.u. .

Still need to consider Pauli principle.

3.2.2 CENTRAL FIELD APPROXIMATION

We take a central potential Vc(ri) which represent the average interaction
of the ith e− with the nucleus screened by the other electrons.

H(r1, r2, . . . , rN) =
N∑

i=1
ĥ′(ri) (7)

ĥ′(ri) = ĥ(ri) + Vc(ri) = −1

2
∇2

i −
Z

ri
+ Vc(ri) (8)

where

Vc(ri) =<
∑
j

1

rij
> . (9)



3 MANY-ELECTRON ATOMS 3

The brackets indicate that we have averaged out the effect of the other
electrons over a sphere. Vc has no angular (φ,θ) dependence: it is spheri-
cally symmetric, ISOTROPIC.

We can then solve the N one-particle equations:

ĥ′iΦ(ri) = εiΦ(ri) = εiFnl(ri)Ylm(θ, φ) (10)

and the total energy is

E =
N∑

i=1
εi . (11)

The Φ(ri) are one-particle ORBITALS.

The resulting TOTAL wavefunction has a product-form:

Ψ(r1, r2, . . . , rN) = Φ(r1)Φ(r2) . . .Φ(rN) . (12)

The s, p, d, f terminology is still useful. The form of the radial part, Fnl,
though, can be quite complicated and is not like hydrogen.

Now the energies εi → εnl depend on both n as well as l, unlike hydrogen.
We label the orbitals 1s, 2s, 2p, 3s, 3p. . . etc. To indicate the number of
electrons which occupy a given orbital we put right-hand superscript, e.g
3p2.

The central field model makes most sense mostly for alkali-atoms Li, Na,
K,. . . or similar ones. For these there is a tightly bound inner core of
N − 1 electrons and a single, outer, loosely bound electron. The central
field model is good for the energy levels of the outer ‘optically active’
electron, especially when it is excited to a high lying state.

The inner core of electrons ‘screens’ the charge of the nucleus. We know
the limiting forms of the interaction felt by the outer electron.

−N
ri

+ Vc(ri) → −N
ri

as ri → 0 (13)

AND

−N
ri

+ Vc(ri) → − 1

ri
as ri →∞ (14)

The extent to which the outer electron samples the screened charge (V ∼
−1/r) relative to the bare nuclear charge (V ∼ −N/r) depends most
strongly on the value of l.
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The 3d orbitals overlap weakly with the inner region. BUT. . .

The 3s orbitals described as ‘penetrating’ since they overlap more strongly
with the inner region and hence with the inner structure of the atom (the
1s, 2s, 2p electrons) (SEE FIGURE 2.7).

• LOW-l orbitals experience more of the bare nuclear charge. Since
En ∝ −Z2/n2, their energy is more negative, they are more tightly
bound.

• Conversely HIGH-l avoid nuclear charge so ‘feel’ only completely
screened charge Z = 1 so behaviour is more hydrogen-like. Energy is
less negative.

So, whereas for hydrogen we had the degeneracy w.r.t l,

E(1s) < E(2s) = E(2p) < E(3s) = E(3p) = E(3d) ,

for a multi-electron atom it is lifted,

E(1s) < E(2s) < E(2p) < E(3s) < E(3p) < E(3d) ∼ E(4s) .

3.2.3 QUANTUM DEFECTS AND SCREENING CONSTANTS

For multi-electron atoms with a core plus a single optically active outer
electron, such as the alkalis or some ions. We can give an analytical
expression for the energy, in a.u., of the outer electron:

Enl = − Z2
eff

2(n−∆nl)2 , (15)

1. Zeff = effective charge ( Nuclear charge + charge of inner core elec-
trons)

2. ∆nl = the QUANTUM DEFECTS
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Properties of quantum defects

In general the ∆nl are positive. To a good approximation they depend
only on l

∆nl → ∆l (16)

For high l the quantum defects tend rapidly to zero.

EXAMPLE. Values of ∆nl

l 0 1 2 3
Li 0.40 .04 0.00 0.00
Na 1.35 0.85 0.01 .0.00

Quantum defects can be found by fitting the formula to well established
spectroscopic data. These results can then be used to calculate quantum
defects for energy levels where no experimental data is available and also
to obtain other atomic parameters, such as scattering data.

3.2.4 ALTERNATIVE TO QUANTUM DEFECTS: THE SCREENING
CONSTANT

Another way of parametrizing the behaviour of a non-hydrogenic atom
is to keep n as an integer but to introduce a variable ‘screened charge’.
Instead of Eq. (15) we have:

Enl = −(Z − σnl)
2

2n2 = −(Z∗)2

2n2 (17)

where σnl is the SCREENING CONSTANT. N.B. In Eq. (15), the quan-
tum defect expression, Zeff is always integer. In the screening constant
equation, Z∗ is non-integer in general.



3 MANY-ELECTRON ATOMS 6

3.3 THE PAULI PRINCIPLE AND ITS EFFECTS

In multi-electron atoms, an additional effective ‘interaction’ called
EXCHANGE appears as a consequence of the spin and Pauli exclusion
principle.

3.3.1 INDISTINGUISHABLE PARTICLES

Consider a system of 2 identical particles. If the particles are indistin-
guishable, then, since the probability densities must be the same

|Ψ(1, 2, t)|2 = |Ψ(2, 1, t)|2 , (18)

where 1 stands for r1, s1z and 2 for r2, s2z, and r is the spatial coordinate
and s1z, s2z are the spin components along the z-axis.

So either the wavefunction is symmetric with respect to exchange of
particles:

Ψ(1, 2, t) = Ψ(2, 1, t) , (19)

OR it is antisymmetric with respect to exchange of particles:

Ψ(1, 2, t) = −Ψ(2, 1, t) . (20)

3.3.2 THE PAULI EXCLUSION PRINCIPLE (PEP)

Quantum wavefunctions of a system of identical fermions
must be anti-symmetric with respect to the exchange of any
two sets of space and spin variables.

Anti-symmetric wavefunctions fulfil the condition that no two electrons
can be in the same quantum state, specified by n, l,ml, and ms.

A two-electron spatial wavefunction which is anti-symmetric is:

φ−(1, 2) =
1√
2
[φa(1)φb(2)− φa(2)φb(1)] = −Ψ(2, 1) . (21)
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where a and b stand for a given set of n, l,ml, and ms. However, if φb = φa

then Ψ(1, 2) = 0 and PEP respected. φa(i) and φb(i) are normalized eigen-
functions of the system. A two-electron spatial wavefunction which is
symmetric is:

φ+(1, 2) =
1√
2
[φa(1)φb(2) + φa(2)φb(1)] = Ψ(2, 1) . (22)

THE HELIUM ATOM

He has two electrons so the wavefunctions must be antisymmetric over-
all with respect to exchange of the electrons:

Ψ(1, 2) = Φ(r1, r2) χ(s1z, s2z) = −Φ(r2, r1) χ(s2z, s1z) . (23)

The χ are normalized eigenfunctions of Ŝ
2

where the total spin Ŝ = Ŝ1 +
Ŝ2 is the vector sum of the individual spins, and Ŝz = Ŝ1z + Ŝ2z its z
component.

For individual electrons we know the behaviour: the spin quantum number
is always 1/2. The eigenfunctions can be spin up α (↑ ) or spin-down, β
(↓) i.e.,

Ŝzα = +1/2α (24)

OR
Ŝzβ = −1/2β . (25)

For a two particle system the total spin quantum number can be S = 0, 1,
depending on whether the two spins are parallel or anti-parallel and it is
the eigenvalue of:

Ŝ2χ(s1z, s2z) = S(S + 1)h̄2χ(s1z, s2z) . (26)

The value of 2S + 1 is termed the SPIN MULTIPLICITY,

For 0 we get 2S + 1 = 1 → singlet,

For 1/2 we get 2S + 1 = 2 → doublet

For 1 we get 2S + 1 = 3 → triplet



3 MANY-ELECTRON ATOMS 8

SPIN WAVEFUNCTIONS IN HELIUM ATOM

We have TRIPLET:

χ(1, 2) =


α(1)α(2) χT (Ms = 1) ↑↑
1√
2 [α(1)β(2) + α(2)β(1)] χT (Ms = 0) ↑↓ + ↓↑

β(1)β(2) χT (Ms = −1) ↓↓
(27)

or SINGLET

χ(1, 2) =
1√
2

[α(1)β(2)− α(2)β(1)] χS(Ms = 0) ↑↓ − ↓↑ . (28)

Then:

Ŝ2χT
Ms

= 2h̄2χT
Ms
⇒ S = 1 (29)

Ŝzχ
T
Ms

= h̄Msχ
T
Ms
⇒Ms = −1, 0, 1 , (30)

AND

Ŝ2χS
Ms

= 0 χS
Ms
⇒ S = 0 (31)

Ŝzχ
S
Ms

= 0 χS
Ms
⇒Ms = 0 . (32)

So, for two electrons, we have four possible spin eigenstates with

(S,Ms) = (1, 1), (1, 0), (1,−1) SYMMETRIC

or
(S,Ms) = (0, 0) ANTI-SYMMETRIC

TOTAL WAVEFUNCTION OF HE

Ψ(1, 2) =
1√
2

[φa(1)φb(2)− φa(2)φb(1)]χT
Ms=0,±1

Ψ(1, 2) =
1√
2

[φa(1)φb(2) + φa(2)φb(1)]χS
Ms=0

Lowest state of He is 1s 1s ≡ 1s2 so φa = φb

⇒ this CANNOT be a triplet since then Ψ(1, 2) = 0.

Excited He, e.g., 1s 2s, CAN be a triplet (S = 1)
and can ALSO be a singlet (S = 0).
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3.4 EXCHANGE

The spin-dependent properties of the wavefunction give rise to interactions
for which there is no classical analogue, called EXCHANGE. Consider
case of the singlet and triplet from the same configuration of electrons,
e.g., 1s 2s in helium. The contribution from the e−– e− repulsion is:

I =<
1

r12
>=

∫
Ψ∗(1, 2)

1

r12
Ψ(1, 2)dτdσ , (33)

where the integration is taken over both spin (σ) and spatial coordinates
(τ).

(a) Singlet case:

I =
∫ ∫

φ∗+χ
S∗
[

1

r12

]
φ+χ

Sdτdσ.

(34)

Since 1/r12 does not act on spin, we can separate the integrals:

I =
1

2

∫
{φa(1)φb(2) + φa(2)φb(1)}∗

× 1

r12
{φa(1)φb(2) + φa(2)φb(1)} dτ︸ ︷︷ ︸

Spatial

× 1

2

∫
{α(1)β(2)− α(2)β(1)}∗ {α(1)β(2)− α(2)β(1)} dσ︸ ︷︷ ︸

Spin integral = 1 since spin function is normalized

=
∫ |φa(1)|2|φb(2)|2

r12
dτ︸ ︷︷ ︸

Coulomb integral
gives repulsion be-
tween two charge
clouds

+
∫ φ∗a(1)φ∗b(2)φa(2)φb(1)

r12
dτ︸ ︷︷ ︸

Exchange integral has no clas-
sical analogue—arises from
Pauli Principle

= C + E (35)

Note: we have two times two terms in integrand differing only by the la-
bels. These will integrate to same result, so cancel 1/2. Both C and E are
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repulsive, exchange interaction is repulsive and the overall effect will
be to make the state less tightly bound, than when the 1

r12
term is not

included.

(b) Triplet case:

Consider the α(1)α(2) component, i.e. ↑↑.

I =
∫ 1√

2
{φa(1)φb(2)− φa(2)φb(1)}∗ {α(1)α(2)}∗ 1

r12

× 1√
2
{φa(1)φb(2)− φa(2)φb(1)} {α(1)α(2)} dσdτ .

(36)

As before, we can separate that spatial and spin parts and use,

∫
spin

{α(1)α(2)}∗ α(1)α(2)dσ = 1 ,

so

I =
∫ |φa(1)|2|φb(2)|2

r12
dτ −

∫ φ∗a(1)φ∗b(2)φa(2)φb(1)

r12
dτ

= C − E (37)

The exchange part is now negative, exchange is attractive, it decreases
the overall repulsion between the electrons and the state is more tightly
bound than the singlet state. Can be qualitatively understood by consid-
ering the antisymmetric spatial wavefunction which vanishes when r1 =r2
so that on average the electrons are further apart and each one ’screens’
the nucleus less for the other one, resulting in a more tightly bound state.

So we have different energy level for singlet (Parahelium) and triplet (Or-
thohelium) states (see energy levels in figure 3.1).
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3.5 CONFIGURATIONS AND TERMS

3.5.1 CONFIGURATIONS

configurations and spectroscopic notation

• The value of n is given as a number.

• The value of l as a letter, s, p, d . . .

• There are 2l + 1 values of ml, 2 values of ms.

•To indicate the number of electrons which occupy a given orbital we put
right-hand superscript.

• By the Pauli principle, each orbital nl can hold 2× (2l + 1) electrons.

The ground state configuration of atoms is given by filling orbitals in
energy order with Z (atomic number) electrons (for a neutral atom).

Terminology

• Electrons having the same n are said to be in the same shell .

• Electrons having the same n and l are said to be in the same sub-shell .
We indicate the number of electrons in the subshell as a superscript
on l, i.e. p2.

• Each shell can hold 2n2 electrons = 2
∑

l<n 2l + 1.

• If a shell contains 2n2 electrons it is said to be closed (filled,complete).

• If a shell contains< 2n2 electrons it is said to be open (unfilled,incomplete).

• Electrons in open shells are optically active.

• The chemical properties of elements are determined by the outer
electrons, also referred to as valence electrons .

• Electrons with the same nl are said to be equivalent .

See figure 3.2 for Periodic Table. See Brehm and Mullin or other books
for the configurations of the atoms and discussion on their behaviour.
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The Ionization energy is the energy required to remove one valence elec-
tron, it is maximum for the noble gases and minimum for the
alkalis. The range is ≈ 4eV up to 24.6 eV. Note to remove a second elec-
tron, after having removed one, will require more energy than to remove
the first one. See figure 3.3 for Ionization Energy versus Z.

3.5.2 TERMS

Configurations of He split into singlet (S = 0) or triplet (S = 1) terms,
depending on the TOTAL spin quantum number. Also split into terms ac-
cording to the value of the TOTAL ORBITAL ANGULAR MOMENTUM
quantum number L, with

L̂ =
∑
i

L̂i (38)

where L̂i is the orbital angular momentum of the i th electron. The total
orbital angular momentum quantum number, L, and and the total spin
angular momentum quantum number, S. are good quantum numbers

The electronic states are simultaneous eigenfunctions of Ĥ, L̂
2
, Ŝ

2
.

For a given configuration, the possible values of L and S are determined by
adding the individual angular momenta of each electron, rejecting values
of L and S which corresponding to states forbidden by (PEP).

The terms are given as 2S+1L.

For L = 0, 1, 2, 3, . . . we use the notation S, P, D, F,. . . to classify the
quantum levels rather than nl orbitals which arise from the central field
approximation.

An important simplification results from the fact that for a CLOSED shell,

Ŝ =
∑
i

Ŝi = 0 ; L̂ =
∑
i

L̂i = 0 , (39)

where these sums are over the electrons in the sub-closed shells ONLY
(consider the vector addition of the operators). So when we work out S
or L we need only consider electrons outside sub-closed shells, i.e., the
valence or optically active electrons.
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• 2 non-equivalent electrons

e.g. (nl and n′l) or (nl and nl′), etc. Note that the PEP is automatically
satisfied.

Consider two electrons with L̂1, Ŝ1 and L̂2, Ŝ2 and the total orbital an-
gular momentum is

L̂ =
∑

i=1,2
L̂i, (40)

with

L = |
∑
i

li|min → |
∑
i

li|max (in steps of 1)

|l1 − l2|, |l1 − l2|+ 1, . . . , l1 + l2 − 1, l1 + l2. (41)

such that L̂
2
ΨT = L(L+ 1)h̄2ΨT

The total spin angular momentum is

Ŝ =
∑

i=1,2
Ŝi (42)

and the total spin angular momentum quantum number can take the
values

S = |
∑
i

si|min → |
∑
i

si|max (in steps of 1)

|s1 − s2|, |s1 − s2|+ 1, . . . , s1 + s2 − 1, s1 + s2. (43)

such that Ŝ
2
ΨT = S(S + 1)h̄2ΨT .

• 2 equivalent electrons

Some electrons have the same nl values, therefore by the PEP we must
ensure that they have different ml or ms values.

A) Consider the ns2 cases.

These have the same n, l and ml, therefore they must have opposite spin
(ms = ±1/2) and S = 0. So the only possible term is 1S

B) Consider a np2 case, e.g., 2p2

We have l1 = l2 = 1. and s1 = s2 = 1/2

and for each e− we have ml = 0,±1 and ms = ±1/2.
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There are 24 possible combination of these quantum numbers (see figure
3.4a) but:

i) States for which ml1 = ml2 and ms1 = ms2 are excluded by the PEP.

ii) Two pairs of values ml1,ms1 and ml2,ms2 which differ only by the e−

label (1,2) only give one state.

As shown in figure 3.4b there are only 15 possible states left. The
important point here is the way you order them so as to find the terms
which turn out to be 1S, 3P , 1D (see figure 3.4b).

3.5.3 HUND’S RULES FOR ORDERING TERMS

Hund’s rules, which were established empirically and apply rigorously only
to the ground state configuration, provide guidelines for ordering terms.

HUND’S RULES

For a given electron configuration:

• The term with the largest value of S has the lowest
energy. The energy of other terms increases with de-
creasing S.

• For a given value of S, the term having the maximum
value of L has the lowest energy.

For example, in the case of the 2 non-equivalent electrons considered in
above we have the following ordering:

E(3D) < E(3P) < E(3S) < E(1D) < E(1P) < E(1S) .
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3.6 THE SPIN-ORBIT INTERACTION

3.6.1 LEVELS SPLITTING

Terms split into levels because of SPIN-ORBIT Interaction. The atomic
Hamiltonian may be written:

Ĥtot = Ĥ + ĤSO (44)

where

Ĥ =
∑
i

(−1

2
∇2

i − Z

ri
) +

∑
i,j

i>j

1

rij
(45)

is the multi-electron Hamiltonian. We shall show below that

ĤSO = A(L, S)L̂ · Ŝ (46)

is the Spin-Orbit term and represents a small energetic perturbation rel-
ative to Ĥ and A(L, S) is a constant.

An electron moving in a circular Bohr orbit (of radius r around a fixed
nucleus) acts like a current loop and so is associated with a magnetic mo-
ment. In order to describe this interaction using a semi-classical approach
we use the so-called ’vector-model’ description of the atom, i.e. we use
L and S as vectors. But remember that in QM they are operators and
that the vector approach is just there to help us visualize things.

3.6.2 MAGNETIC MOMENTS

The magnetic moment µ
X

and the general angular momentum, X, of an
arbitrary rotating body with mass M , and charge Q, always satisfy a
relation of the form:

µ
X

= gX

Q

2M
X , (47)

where gX is the so-called GYROMAGNETIC or g-factor and depends
on the details of the rotating charge distribution.

Now, classically, if a magnetic moment µ
X

is placed in a uniform B-field,
a torque τ arises:

τ =
dX

dt
= µ

X
×B = g

X

Q

2M
X ×B. (48)
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So τ is perpendicular to X and B and results in a precession of X around
B (see figure 3.7).

We define the Larmor precession frequency

ω = g
X

Q

2M
B → τ = −ω ×X (49)

Also, the system with a magnetic moment µ
X

placed in a magnetic field
has an interaction potential energy

V = −µ
X
.Bint (50)

note there was an error in the lectures in this eq.

For a current loop produced by a negative charge, µ
L

is OPPOSITE to L,
i.e.,

µ
L

= − e

2m
L . (51)

See figure 3.5 and standard text book for derivation. From Eqs (51)
and (47) we identify the ORBITAL g-factor:

gL = 1 . (52)

Expressing L in units of h̄, we obtain,

µ
L

= −gLµB
L

h̄
(with gL = 1) , (53)

where µB is the BOHR MAGNETON:

µB =
eh̄

2m
=


1/2 atomic units
9.274× 10−24 Am2

5.788× 10−9 eV/Gauss
.

Now, for the spin: analogous to Eq. (47), we can introduce a spin mag-
netic moment associated with the intrinsic angular momentum of the elec-
tron:

µ
S

= −gSµB
S

h̄
, (54)

where gS is the SPIN g-factor and, from Dirac’s relativistic quantum the-
ory (where spin properly belongs) of the electron interacting with a mag-
netic field, we have gS = 2.



3 MANY-ELECTRON ATOMS 17

3.6.3 THE SPIN-ORBIT TERM

We now want to find the effect on the energy of the system that the spin
magnetic moment will have. Consider an electron (charge -e) moving in
a Bohr orbit around a nucleus with (charge +Ze). Let the velocity of the
e− be v and its position w.r.t. the nucleus be r. In the electron reference
frame, the nucleus is moving around with a velocity −v, constituting a
current which will produce a magnetic field at the instantaneous location
of the e− (see figure 3.6).

From the Biot-Savart Law:

Bint =
µ0

4π

Ze(−v)× r

r3 . (55)

The Coulomb field of the nucleus is

E =
1

4πε0

Zer

r3 (56)

and using µ0ε0 =
1

c2
we get

Bint =
−v × E

c2
(57)

We can also relate Bint to L, using L = mr × v,

Bint =
µoZe

4π

r × v

r3 =
Ze

4πε0

L

mr3c2
. (58)

Note: Change of sign from change of order, used µ0ε0 =
1

c2
.

So in the case of the ’spinning’ electron interacting with the magnetic field
due to its orbital motion we have the spin-orbit interaction

VSL = −µ
S
.Bint (59)

=
Ze2

4πε0

(
S.L

m2r3c2

)
(60)

using the definition of the Bohr magneton and 58.

In the reference frame where the nucleus is at rest an additional factor,
called the Thomas Factor =1/2, arises due to the fact that the e− is in an
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accelerated orbital motion. The nucleus sees the set of axis in which the
e− is instantaneously at rest as precessing relative to its own set - Thomas
frequency (see figure 3.8).

So the final form of the spin-orbit interaction is

VSL =
Ze2

4πε0

(
S.L

2m2r3c2

)
(61)

which can be written in terms of the dimensionless quantity called the
fine structure constant: α (see part 1), as

VSL = Zα
h̄

2m2c

Ŝ.L̂

r3

 (62)

Note that the energy depends on the scalar product of Ŝ and L̂ and
therefore on their relative orientation. We have reintroduced the operator
notation and see the two vector-operators are now coupled together and no
longer have fixed z components! However, the total angular momentum
Ĵ = L̂+Ŝ, has a fixed z component.

3.6.4 TOTAL ANGULAR MOMENTUM Ĵ

A) The one-electron case.

Ĵ = L̂+ Ŝ and Ĵz = L̂z + Ŝz . (63)

The eigenvalue eqs. are now

Ĵ
2
Ψ = j(j + 1)h̄2Ψ and ĴzΨ = mjh̄Ψ (64)

j = |l− s|, . . . , |l+ s| in step of one, is called the total angular momen-
tum quantum number.

mj = −j, . . . , j in step of one, is called the total angular momentum
magnetic quantum number.

The good quantum numbers for a one-electron atom are therefore n, l, j
and mj, i.e.

Ψn,l,ml,ms
→ Ψn,l,j,mj

See figure 3.9.
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Notation. We now that spin-orbit interaction will change the energy de-
pending on Ŝ and L̂, so we have different levels for different Ĵ .

We now label each energy level with spectroscopic notation n2s+1lj.

Note similarity with term notation and that as s = 1/2 we have 2s+1=2.

However, some books, e.g. Brehm and Mullin, use n2s+1Lj,where L stands
for l written as capital letter, not the total orbital angular momentum.

The 2p state of H is split because of the spin-orbit interaction into two
levels, 22p1/2 and 22p3/2, depending on the value of j. Such a splitting of
a state due to the spin-orbit interaction is called the fine structure.

B) The multi-electron case.

We have the eigenvalue eqs.

Ĵ
2
Ψ = J(J + 1)h̄2Ψ and ĴzΨ = MJ h̄Ψ. (65)

We now label each energy level with spectroscopic notation n2S+1LJ

but J can now be obtained in two different manners.

i) The LS or Russell-Saunders coupling

Used for low-Z atoms for which the spin-orbit interaction is much less
than the interaction between electrons.

• Combine all individual spins,
∑
i

Ŝi = Ŝ, to give total spin quantum

number S.

• Combine all individual orbital angular momenta,
∑
i

L̂i = L̂, to give total

orbital angular momentum quantum number L.

• Then combine the quantum numbers L and S to give J as

J = |L− S|, |L− S + 1|, . . . , |L+ S − 1|, |L+ S|. (66)

A third Hund’s rule exist regarding the J-values:
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• Normal case - outershell is less than half-full. The lowest
energy in the lowest energy term corresponds to the smallest J-value

• Inverted case - outershell is more than half-full. The lowest
energy in the lowest energy term corresponds to the largest J-value

• When the subshell is half full there is no multiplet splitting.

ii) jj-coupling

In high-Z atoms, the spin-orbit coupling between Ŝi and L̂i for each in-
dividual electron is strong and combines them to give each electron an
individual Ĵ i with quantum number ji. These are then combined together
to give a total Ĵ ,

Ĵ =
∑
i

Ĵ i. (67)

The total angular quantum number is then

J = |
∑
i

ji|min → |
∑
i

ji|max in steps of one (68)

where
ji = li + si. (69)

Note: Neither LS or jj coupling describe perfectly the total angular mo-
mentum especially for medium Z atoms (see figure 3.10).

3.6.5 LANDÉ INTERVAL RULE

Rather than being eigenstates of L2, Lz, S
2, Sz like the terms and con-

figurations, the effect of the spin-orbit term is to split the energies into
LEVELS which are eigenstates of J2, Jz, L

2 and S2.

For the one-electron case

∆ESL =
∫

Ψn,l,j,mj
VSLΨn,l,j,mj

dτ . (70)

where VSL ∝ L̂ · Ŝ. Now using

Ĵ
2

= (L̂+ Ŝ)2 = L̂
2
+ Ŝ

2
+ 2L̂ · Ŝ (71)
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and therefore operating with 1
2

[
Ĵ

2 − L̂
2 − Ŝ

2]
instead of L̂ · Ŝ and inte-

grating eq. 70 we get for the one-electron case

∆ESL =
1

2
A(l, s) [j(j + 1)− l(l + 1)− s(s+ 1)] (72)

and A(l, s) is a constant containing < 1/r3 > and is ∝ Z4.

For the multi-electron case a similar derivation gives

∆ESL =
1

2
A(L, S) [J(J + 1)− L(L+ 1)− S(S + 1)] (73)

If we now consider the difference between the spin-orbit energy between
two adjacent levels we obtain

∆ESL(J)−∆ESL(J − 1) = A(L, S)J (74)

THE LANDÉ INTERVAL RULE
The separation between adjacent energy levels is propor-
tional to the larger of the two J values.

3.6.6 PARITY

Parity describes the behaviour of ψ under reflection through the origin
(nucleus), i.e., r → −r.

Ψ(r1, r2, . . . , rN) = ±Ψ(−r1,−r2, . . . ,−rN) . (75)

Whether the wavefunction is even or odd depends on l.

For a one electron atom, the parity is (−1)l, i.e., the parity of a spherical
harmonic.

For N electrons it is:

(−1)l1(−1)l2(−1)l3...(−1)lN = (−1)
∑

li . (76)


