Atomic & Molecular Physics Solution to Problem Sheet 2224.2
Issued Thursday 7 February 2008, due in Thursday 14 February 2008

1. If o and 3 are the simultaneous eigenstates of 52 (spin) and 5., then:
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Possible combinations of two one-electron spin wavefunctions are:
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And so the first three wavefunctions canbe grouped as a spin triplet with total spin S =1,
as Mg = 1,0, —1 and the states are symmetric under exchange, and the remaining state is
a spin singlet (S = 0 and antisymmetric). [2]

The Pauli exclusion principal means that the symmetric (triplet) spin wavefunction is as-
sociated with an antisymmetric spatial wavefunction. In helium this space wavefunction
is identically zero if the two electrons have the same spatial co-ordinate, so (qualitatively,
semi-classically) the electrons are forced to keep apart by the symmetry of the wavefunc-
tion. This is not the case for the spin singlet where the electrons can exist very close to
one another. In the triplet state, therefore, the electrons are exposed to a greater Coulomb
attraction from the nucleus (no mutual shielding), and are more tightly bound (lower in

energy.) 2]



2. The central field approximation is a way of dealing with the electron-electron interactions in
a multi-electron atom. This is done by writing a spherically symmetric (central) potential
which represents the interaction of the electron with the nucleus screened by the other
electrons. This description is most useful for atoms with a single valence electron which sees
a tightly bound inner core of electron screening the nucleus. This atom is then ‘hydrogen-
like’ (i.e. a single optically active electron), and the energy levels are similar to those of
hydrogen with a deviation characterised by the quantum defect, A,,;.

Since FE,; = — fg‘fj"z we can derive a Rydberg-like formula for the wavelength of the

photon associated with the 2s — nd transition:
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Quantum defects for d-states are small, so A,q — 0, and we can write
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So a graph of FE,q .35 vs n—lg will be approximately a straight line. The graph is plotted
below, for plotting the graph:
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3. Hund’s Rules for the ordering of terms are:

1. The term with the largest value of S has the lowest energy. The energy of other terms
increases with decreasing S

2. For a given value of S the term having the maximum value of L has the lowest energy

3(a) Normal case - outershell is less than half-full. The lowest energy in the lowest energy
term corresponds to the smallest J value

3(b) Inverted case - outershell is more than half-full. The lowest energy in the lowest
energy term corresponds to the largest J value

3(c) When the subshell is half full there is no multiplet splitting. [4]

The electron configuration for aluminium is 1s?2s22p®3s23p?. [1]

There is just one electron in an unfilled subshell to consider. The spin is s = %, orbital
angular momentum [ = 1, and so possible values of total angular momentum are j = H:% =

5,or3. The term symbols are therefore

2 2
p1, and "ps

2]
As both term have the same s and [ we need to use the third Hund’s Rule to split them.

The ?p subshell is less than half-full, so we have the ‘Normal case’ (rule 3(a) above), and so
the lowest j lies lowest in energy, i.e.

E(*py) < E(*ps)
[1]
The configuration for Al* is therefore 1522s22p°®3s?. [1]
By comparison with helium, configuration 1s?, we can deduce that since we have two elec-
trons in an s-subshell the allowed term must be he same, i.e. 'Sg. [1]



