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The duration of this examination is one and a half hours.

This paper has two Sections and you should attempt both Sections. Please read carefully

the instructions given at the beginning of each Section.

Calculators are NOT permitted in this examination.

The following notation is used throughout unless otherwise stated: The pressure, density,

surface density, and temperature are denoted by P , ρ, Σ, and T respectively. The effective

temperature is denoted by Teff , and opacity by κ. The mean molecular weight, gas

constant, and kinematic viscosity are denoted by µ, R, and ν, respectively.

The gravitational constant G = 7× 10−11 Kg−1 m3 s−2. Stefan’s constant σ = 6× 10−8

J m−2 s−1 K−4. The speed of light c = 3× 108 m s−1. The solar mass M� = 2× 1030 Kg.

The solar radius R� = 7 × 108 m. Electron scattering opacity κ = 0.04 m2 Kg−1. The

gas constant R = 8× 103 J K−1 Kg−1.

The following mathematical identities may be useful:

∇.A in cylindrical polar coordinates:

∇.A =
1

R

∂(RAR)

∂R
+

1

R

∂Aφ

∂φ
+

∂Az

∂z

Trigonometric Identities:
d

dθ
(tan θ) = sec2 θ

cos2 θ + sin2 θ = 1
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SECTION A You should attempt all questions. Marks awarded are shown next to

the questions.

1) [15 marks] Accretion of matter onto neutron stars and black holes may occur at a

maximum rate given by the Eddington limited accretion rate. Explain briefly the physical

origin of this upper limit for the accretion rate.

Derive the following expression for the Eddington limited accretion rate, ṁEdd, onto a

compact object of mass M :

ṁEdd =
40πGM

cκ
(1)

Here κ is the opacity of the accreting gas, c is the speed of light, G is the gravitational

constant. When deriving equation (1) you may use the following facts and assumptions:

The luminosity L is related to the radiative flux F by L = 4πr2F (r ≡ radius).

The radiative flux is given by the expression:

F = − c

κρ

d

dr

(
aT 4

3

)

The radiation pressure is given by Prad = aT 4/3, where a is the radiation constant.

Luminosity generated by mass accretion at a rate ṁ onto an object of mass M and radius

R is given by L = GMṁ/R.

You should assume that the radius of the accreting object R = 5RS where RS is the

Schwarzschild radius.

Estimate the Eddington limited accretion rate onto a 108 solar mass black hole, assuming

that the opacity is produced by electron scattering. Estimate the effective temperature

Teff at a radius of R = 5RS in an accretion disc orbiting the black hole through which the

matter is accreting. Comment on the temperature obtained in relation to the observation

that X-rays are emitted by active galactic nuclei.
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2)[15 marks] The virial theorem for an isolated fluid mass (e.g. a molecular cloud) acting

under the forces of self–gravity and pressure may be written

d2I

dt2
= 4K + 6

∫
V

PdV + 2Eg

where I is the moment of inertia, K is the total kinetic energy of the fluid mass, P is the

pressure, and Eg is the total gravitational potential energy given by

Eg = −1

2
G
∫

V

∫
V

ρ(r)ρ(r′)

|r− r′|
dV dV ′

where ρ(r) is the density at position r in the cloud.

Consider a spherical isothermal molecular cloud of mass M , rotating uniformly with

angular velocity Ω, and with radius R. The cloud has internal turbulent motions such

that the magnitude of the maximum turbulent velocity is |vmax|. By assuming that the

constituent gas obeys the ideal gas law, show that a sufficient condition for gravitational

collapse of this cloud may be written as

GM

2R
> 2R2Ω2 + 2|vmax|2 +

6RT

µ
.

Consider a cloud with temperature T = 10 K, internal turbulent motions with |vmax| = 10

m s−1, rotational angular velocity Ω = 10−14 rad s−1, radius R = 3 × 1015 m, and with

mean molecular weight µ = 2. Estimate the minimum mass that such a cloud requires

in order to collapse to form a star.
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3) [20 marks] Consider a close binary system composed of two stars of mass m1 and m2

in circular orbit about their common centre of mass. Working in a rotating Cartesian

coordinate system that corotates with the orbital motion of the binary, and whose origin

lies at the centre of mass, the coordinates of the two stars in the orbital plane are (x1,

y1)= (x1, 0) and (x2, y2)= (x2, 0). The separation between the two stars is given by

D = x2−x1. Show that the total (gravitational plus centrifugal) potential at an arbitrary

point (x, y) is given by:

Φ(x, y) = − Gm1√
(x− x1)2 + y2

− Gm2√
(x− x2)2 + y2

+
1

2
Ω2(x2 + y2) (2)

where Ω is the angular velocity of the rotating reference frame.

The L1 Lagrange point is a point of equilibrium in this system. Show that the following

expression holds at the L1 point, where xL represents the x–coordinate of the L1 point:

m1
(xL − x1)

|xL − x1|3
+ m2

(xL − x2)

|xL − x2|3
+

(m1 + m2)

D3
xL = 0 (3)

Draw a sketch of the equipotentials produced by equation (2) for a binary system with

m1 = m2. On your diagram you should indicate the behaviour of the forces in the near-

vicinity of the individual stars and at large distance from the stellar components, the

Roche lobes, and the position of the L1 point.

For a binary system with m1 = 2 solar masses, m2 = 0.5 solar masses, and

D = 109 m, equation (3) is satisfied for xL = 5 × 108 m (assuming that star m1 lies on

the negative x-axis and star m2 lies on the positive x-axis). Show that mass transfer

from star m2 into the Roche lobe of star m1 would result initially in the formation of a

gaseous ring of approximate radius R = 3 × 108 m, in orbit around star m1. Comment

on the significance of this result given the fact that a two solar mass main sequence star

has a radius that is greater than the solar radius.

The viscosity operating in this gaseous ring is characterised by a value of the dimensionless

viscosity coefficient α = 0.1, and the ratio of height to radius of the ring is given by

H/R = 0.01. Estimate the time required for the ring to spread due to the action of

viscosity so that mass begins to accrete onto the star m1. You should assume that the

radius of the star m1 is much less than the initial radius of the ring.
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SECTION B Each question carries 50 marks. You may attempt all questions but

only marks for the best question will be counted.

1) [50 marks] Consider an axisymmetric accretion disc with surface density Σ, kinematic

viscosity ν, and in which forces due to pressure and self–gravity may be neglected. Derive

the disc surface density evolution equation in the form

∂Σ

∂t
+

1

R

∂

∂R

(∂(R2Ω)

∂R

)−1
∂

∂R

(
R3νΣ

dΩ

dR

) = 0

where R is the radial coordinate and Ω is the angular velocity.

You may assume that the torque acting in the direction of speeding the disc up, due to

material interior to R, is given by

T = −2πR3νΣ
dΩ

dr
.

Show that if the disc is in a state of Keplerian rotation, the surface density evolution

equation is
∂Σ

∂t
=

3

R

∂

∂R

[
R1/2 ∂

∂R

(
R1/2νΣ

)]
.

In a steady state disc

νΣ =
ṁd

3π

[
1−

(
R∗

R

)1/2
]

where ṁd is the constant rate of inwards mass flow in the disc and R∗ denotes the position

in the disc where dΩ/dR = 0. The rate of energy production per unit area due to viscous

dissipation in an accretion disc is

εD = R2νΣ

(
dΩ

dR

)2

Show that the effective temperature profile in a steady state accretion disc is given by

T 4
eff =

3GMṁd

8πR3σ

[
1−

(
R∗

R

)1/2
]

Show that only half of the available energy is radiated by accreting matter from infinity

to radius R∗ in a steady accretion disc, and explain how the remaining energy is stored.

Describe a mechanism that may lead to the liberation of the remaining available energy.
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2) [50 marks] Consider a protoplanet of mass mp on a circular orbit in an axisymmetric

Keplerian disc at radius R. The disc material interacts with the protoplanet as it shears

past it, leading to angular momentum exchange. Consider only those parts of the disc that

lie exterior to the protoplanet position. The interaction between disc and protoplanet

can be described using the local impulse approximation. Here a Cartesian coordinate

system is used that is centred on, and corotates with, the protoplanet.

The unperturbed disc flow past the the protoplanet occurs in the y direction only, with

vy = u = −R
dΩ

dR
x,

where Ω is the disc angular velocity at the protoplanet position. The equation of mo-

tion governing the deflection experienced by disc material due to an encounter with the

protoplanet is
dvx

dt
= − Gmpa

(a2 + y2)3/2

where vx is the x component of the velocity and a is the impact parameter of the unper-

turbed disc material with respect to the protoplanet. Show that the value of vx after the

encounter is given by

v2
x = 4

(
Gmp

ua

)2

.

The angular momentum exchanged per unit mass during an encounter with the proto-

planet is R∆vy, where ∆vy is the change in the y component of the velocity. The rate

of change of angular momentum of disc material is the change in angular momentum

induced during an encounter divided by the time between encounters. Show that the

torque exerted on the disc by the protoplanet is given by

J̇ =
8(Gmp)

2ΣR

27Ω2a3
0

where Σ is the disc surface density, and a0 is the minimum impact parameter.

Question continues on next page.
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For a protoplanet we take a0 = R(mp/3M∗)
1/3, where M∗ is the mass of the central star.

Show that gap formation will occur in the disc if

mp

M∗
>

27πν

8R2Ω
.

In deriving this result you may assume that the viscous torque acting on the inner disc

edge is given by

J̇ = −3πνΣR2Ω

where ν is the kinematic viscosity.

The kinematic viscosity is given by ν = αH2Ω where H is the semi–thickness of the

disc, and α is a constant. Conditions in protoplanetary discs are such that H/R = 0.07

and α = 6× 10−3, approximately. Estimate the required protoplanet/star mass ratio for

gap formation to occur. Given that the masses of Jupiter, Saturn, and Uranus are 10−3,

3 × 10−4, and 4.8 × 10−5 M� respectively, comment on the implications of your answer

for the formation of the giant planets in the solar system.
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3) [50 marks] Write brief essays on the following topics, giving both a qualitative and

quantitative account of the physical processes involved.

(i). Planet formation in protostellar discs:

Describe the characteristic of protostellar discs

Discuss dust grain evolution leading to the formation of larger solids, giving relevant time

scales

Discuss the growth of planetesimals and the role of gravitational focussing in increasing

growth rates

Discuss the gravitational interaction between protoplanets and protostellar discs, and

their relevance to extrasolar planetary systems

(ii). Accretion disc formation and evolution:

Discuss the different means by which accretion discs can form

Describe the different classes of close binary systems, in particular those applying to

semi-detached systems

Give estimates of the potential energy output that may be obtained by accretion onto

different objects, and compare with other energy source in astrophysics

Discuss the requirement for an anomalous viscosity in accretion discs

Describe different angular momentun transfer mechanisms and the scenarios in which

they are likely to play a role

(iii). Accretion disc – magnetosphere interactions:

Discuss the role of disc–magnetosphere interactions in affecting the inner regions of accretion

discs

Describe the competing forces at work and the range of possible outcomes

Discuss how the rotation rates of the central stars may be modified by interaction between an

accretion disc and stellar magnetosphere

Describe how a simple model of an accretion disc interacting with the magnetosphere of a

neutron star may explain the origin of millisecond pulsars
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