
Appendix D: Example Problems

Problem 1: Question

Suppose some category of galaxies has an observed surface brightness profile I(R) =
I0 f(R/R0) with all galaxies having the same I0 and function f but different galaxies
having different R0. If the mass-to-light ratio is constant everywhere then show that

L ∝ v4

where L is the total luminosity and v is a characteristic velocity.

Problem 2: Question

An astronomer performs optical spectroscopy on a faint galaxy. The spectrum shows a
strong continuum with absorption lines and some emission lines superimposed. What
is the morphological type of the galaxy?

The astronomer observes a second galaxy and finds very strong emission lines super-
imposed on a continuum and some absorption lines. How does the star formation rate
of this second galaxy compare with that in the first? What morphological type might
the second galaxy be?

Problem 3: Question

What is the difference between collisional and collisionless interactions between two
massive bodies? Are the interactions between two gas clouds collisional or collisionless?

Two small systems of stars collide. In this particular case, the gravitational field of
any one star changes the motions of other nearby stars substantially. Is the interaction
between the two systems collisional or collisionless? How would this compare with the
stars in two galaxies that merge together?

A large stationary gas cloud collapses under its own gravitation. 20 % of the initial
potential energy is converted into heat, raising the temperature of the gas. Is this
collapse dissipative or dissipationless?
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Problem 4: Question

The Plummer potential has a gravitational potential Φ(r) at a distance r from the
centre of a spherically-symmetric mass distribution that is given by

Φ(r) = − GMtot√
r2 + a2

,

where Mtot is the total mass, G is the constant of gravitation, and a is a constant.
Derive from this an expression for the mass M(r) interior to a radius r, and show that
the density ρ(r) at a radius r is

ρ(r) =
3Mtot

4π

a2

(r2 + a2)
5

2

.

Problem 5: Question

A family of radial density profiles ρ(r) that have been popular for the theoretical
modelling of spherically symmetric galaxies have been Dehnen models. These are
defined so that the density profiles are

ρ(r) =
q a

4π

rq

r3 (r + a)q+1
Mtot ,

where r is the radial distance from the centre of the galaxy, q is an adjustable pa-
rameter, a is a scaling constant (determining the size of the galaxy), and Mtot is the
total mass. The special case of q = 1, which is called the Jaffe model, is particularly
important because it is found to fit the observed I(R) of ellipticals at least as well as
the de Vaucouleurs R1/4 profile.
What is the mass M(r) interior to a radius r for any value of q?
What is the gravitational potential of a mass distribution having a Jaffe ρ(r)?
The Dehnen models have an interesting limit as q → 0. What is it?
You may use the standard integral

∫

rq−1

(r + a)q+1
dr =

1

q a

rq

(r + a)q
+ constant .

Hints

These questions involve calculations relating to spherically symmetric potentials. Un-
der spherical symmetry, the gravitational potential Φ, the mass interior to a radius
and the density ρ are all functions of the radius r from the centre alone. Converting
between Φ(r) and the density ρ(r) can be done using the Poisson equation

∇2Φ = 4πGρ
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Problem 6: Question

A self-gravitating, spherically-symmetric cloud of gas has the same temperature T
throughout. The equation of hydrostatic equilibrium gives, at a radial distance r from
the centre of the cloud,

1

ρ

dP

dr
= − GM(r)

r2
,

where P (r) is the gas pressure, ρ(r) is the density of the gas, M(r) is the mass interior
to the radius r, and G is the constant of gravitation. The gas obeys the ideal gas
equation, P = npkB

T = ρk
B
T/mp at any point, where np(r) is the number density

of gas particles, mp is the mean mass of the gas particles, and k
B

is the Boltzmann
constant. The gas has the same chemical composition throughout.
Obtain a second-order differential equation involving ρ and r as the only variables.
Show that ρ(r) = σ2/2πGr2 is a solution to this differential equation where σ =
√

k
B
T/mp .

Problem 7: Question

The gravitational potential in a spherically-symmetric galaxy is given by

Φ(r) = 2πGρ0a
2

(

ln(r2 + a2) +
2a

r
tan−1

(r

a

)

)

+ Φ0

at a distance r from the centre, where G is the constant of gravitation, and ρ0, a and
Φ0 are constants.
What is the mass M(r) interior to the radius r as a function of radius r?
What is the circular velocity vcirc as a function of radius r? What happens to vcirc

when r � a? How does this compare with real galaxies?
What is the density ρ as a function of radius r? Do you recognise this density profile?
How would you interpret the constants ρ0 and a?
What practical constraint is there on the constant Φ0? How does the potential Φ(r)
behave as r → ∞ and is this physically realistic?
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Problem 8: Question

The Navarro-Frenk-White density profile is often used to represent galaxies. In this
profile the density ρ at a distance r from the centre of the galaxy is given by

ρ(r) =
k

r(r + a)2
,

where k and a are constants. What is the mass M(r) interior to a radius r implied by
this profile?
What happens to M(r) as r → ∞?

What is the gravitational potential Φ at a radius r?
What is the central density implied by this profile? Is it physically realistic?

Problem 9: Question

The region around the nucleus of a galaxy is observed to consist of a dense cluster of
107 stars moving in randomly orientated orbits with typical velocities of 100 km s−1.
The radius of this region is observed to be 70 pc.

Assuming the density of stars is uniform across the cluster, estimate the relaxation
time of the stellar motions.

How does the relaxation time compare with the age of the galaxy? Can the dynamics
of the stars around the nucleus be modelled as a collisionless system over the lifetime
of the galaxy? How does this compare with the stars in regions away from the nucleus?

[The constant of gravitation is G = 6.673× 10−11 m3 kg−1s−2. The mass of the Sun is
1 M� = 1.989× 1030 kg. One year is 3.1557× 107 s. The age of the Universe is about
13.7 Gyr.]
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Problem 10: Question

The figures below shows the orbit of a star in a galaxy from two different perspectives.
Is the galaxy’s potential (i) spherically symmetric, (ii) oblate, or (iii) triaxial? Justify
your answer on the basis of the character of the orbit.

Summarise briefly the properties of the orbits of stars in such a potential.

Problem 11: Question

The distribution function f in a spherically-symmetric galaxy is related to the mass
density ρ(r) at a radial distance r from the centre by

ρ(r) = 4π
√

2 m

∫ 0

Φ(r)

√

Em − Φ(r) f(Em) dEm ,

where Em is the energy per unit mass for a star, Φ(r) is the gravitational potential at
a radius r, and m is the mean mass per star. Show that a functional form f(Em) =

b (−Em)
7

2 is a solution to this equation for a Plummer potential, where b is a constant,
using the potential and density given in Question 4. Express b is terms of G, Mtot and
a using the result of Question 4. The substitution Em = Φ cos2 θ and the standard
result

∫ π
2

0

sin2 θ cos8 θ dθ =
7π

512

may prove useful.

Assuming m = 0.70M�, what is the value of the distribution function f for (x, y, z, vx,
vy, vz) = (10 kpc, 0, 0, 0, 0, 200 kms−1) in a galaxy having a Plummer potential with
a softening parameter a = 1.70 kpc and a total mass of 2.0 × 1012M�? Note that
x = y = z = 0 corresponds to the centre of the galaxy in this coordinate system.

[ 1M� = 1.989× 1030 kg, 1 kpc = 3.0857× 1019 m, and G = 6.673× 10−11 m3 kg−1 s−2.]
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Problem 12: Question

A spherical elliptical galaxy has a total density distribution

ρtot(r) =
ρ0

1 + r2/a2
,

as a function of radial distance r from its centre, where ρ0 and a are constants (here
the total density means the density including all stars, gas and dark matter). Show
that the mass M(r) interior to a radius r has the form M(r) ∝ r3 for r � a and
M(r) ∝ r for r � a.

Consider a population of massless test particles in the potential of this galaxy. Assume
that this population is spherical, non-rotating, isothermal and isotropic, with velocity
dispersion σ in each velocity component. What is the radial density distribution ρp(r)
of this test particle population, expressed in terms of M(r) and r?

Solve for ρp(r) in terms of r explicitly for large radii (i.e. for regions where r � a) to
show that the density has a power law dependence on radius. What is the index of
this power law? Give a physical interpretation of this index. What is the condition for
the density distributions of the test particle population and the galaxy itself to have
similar forms at large r?

Problem 13: Question

Many of the researchers who perform N -body simulations do so to study the dynamics
of galaxies, but some others us N -body techniques to study the dynamics of globular
clusters. Naively, we might expect the latter group of people would have an easier job,
because they can easily afford as many particles in their simulations as there are stars
in the real objects, and they do not need to worry about gas dynamics. We might
therefore expect that globular cluster dynamics would be a well-understood subject
by now. However, many problems have not been solved fully and plenty of difficult
research remains to be done. This problem is to work out why.

Consider a globular cluster and a galaxy, both ∼ 1010 yr old. The globular cluster has a
size ∼ 20 pc across and contains 105 stars moving with a typical velocity 15 km s−1. The
galaxy is ∼ 20 kpc across and contains ∼ 1011 stars with a typical velocity 200 km s−1.
Both of these are simulated using 105 particles. Give two reasons why the globular
cluster simulation will be more difficult.
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Problem 14: Question

The second Jeans equation in a spherically-symmetric potential gives

d

dr

(

n 〈v2
r〉
)

+
n

r

[

2〈v2
r〉 − 〈v2

θ〉 − 〈v2
φ〉
]

= − n
dΦ

dr
,

for a spherical polar coordinate system (r, θ, φ), where n(r) is the number density of
stars in space, Φ(r) is the gravitational potential, and vr, vθ and vz are the components
of the velocity in the r, θ and φ directions at a point.
A galaxy has a gravitational potential at a distance r from its centre that is given by

Φ(r) = − GMtot√
r2 + a2

,

where Mtot is the total mass, a is a constant and G is the constant of gravitation. As-
suming that the velocity dispersion σ of a population of stars is isotropic and constant
over the whole galaxy, and that there is no net rotation, show that the number density
of these stars in this potential is

n(r) = n0 exp

[

GMtot

a σ2

(

1
√

1 + r2/a2
− 1

)]

,

where n0 = n(0).

Problem 15: Question

Observations of an isolated H II region show that the total flux of photons from
the nebula through the Hα emission line at the top of the Earth’s atmosphere is
9 × 106 photons s−1 m−2, while it is 6 × 106 photons s−1 m−2 in the Hβ line, 4 ×
106 photons s−1 m−2 in Hγ, 3× 106 photons s−1 m−2 in Hδ, and 5× 106 photons s−1 m−2

in all other Balmer emission (line and continuum). The H II region lies at a distance
of 900 pc from the Earth. What is the total luminosity of ultraviolet photons with
wavelengths shorter than 912 Å from stars inside the H II region?

[1 pc = 3.0857 × 1016 m.]

Problem 16: Question

Observations of a part of the interstellar medium of the Galaxy show that a region of
hot ionised gas (with a temperature 500 000 K, number density of ions 6000 m−3), a
region of cold neutral gas (temperature 50 K, number density of molecules 2×107 m−3),
and a region of warm neutral gas (temperature 10 000 K, number density of atoms
1 × 105 m−3) are in contact with each other. Which, if any, of these are in pressure
equilibrium with the others?
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Problem 17: Question

A star lying in the Galactic plane is observed to have a visual magnitude of V =
13.60 mag and a colour index (B − V ) = 0.98 mag. Its spectrum shows it to be a
dwarf star of spectral type G6 with a solar composition. Stars of this type are known
to have an intrinsic colour of (B − V )0 = 0.76 mag and an absolute visual magnitude
of MV = +5.20.
What is the extinction by the interstellar medium in the V band between us and the
star? What is the distance of the star? What is the mean extinction per unit distance
in the direction of the star expressed in mag kpc−1 for the V band? Will this extinction
per unit distance be the same for other stars in the sky?
What would you expect the extinction to be towards the star in the I and K photo-
metric bands (which have central wavelengths of 790 nm and 2.2 µm respectively)?

Problem 18: Question

The mean density in the form of stars in the disc of the Galaxy is observed to vary
with the distance z from the Galactic plane as ρs(z) = ρsoe

−|z|/hs close to the Sun,
where ρso is the density of stars in space in the plane, and hs is a scale height (ρso

and hs are therefore constants at the distance of the Sun from the Galactic Centre).
The density of the interstellar gas ρg is also found to vary exponentially with height,
with ρg(z) = ρgoe

−|z|/hg , where ρgo and hg are constants. Observations show that
hs = 250 pc and hg = 150 pc and ρso = 6 ρgo. What is the ratio of the surface density
of stars, Σs, to that of gas, Σg, at the Sun’s distance from the Galactic Centre?
How do you expect the surface density of the dust, Σd, to compare with Σs?

Problem 19: Question

Observations of the extinction of starlight by dust show that the ratio of colour ex-
cesses, EU−B/EB−V, for the (U–B) and (B–V) colour indices is nearly constant across
the Galaxy, regardless of the strength of the extinction. Prove that the parameter

Q ≡ (U − B) − EU−B

EB−V
(B − V)

is independent of interstellar extinction.
(Note that U, B and V are magnitudes in the near ultraviolet, in the blue and in the
visual parts of the spectrum.)

A hot main sequence star in the Galactic plane is observed to have magnitudes U =
12.35, B = 12.69 and V = 12.00. What is the Q parameter for this star given that a
standard value for EU−B/EB−V is 0.72 in the Galaxy?

What is the spectral type of the star given the standard relationship between Q and
spectral type below. What is the (B-V) colour excess EB−V of the star? Estimate the



V-band interstellar extinction AV and the star’s distance.

The table below gives the spectral type, the intrinsic (B–V) colour index, the Q pa-
rameter and the absolute magnitude in the V band for hot main sequence stars.

Spectral type O5V B0V B5V A0V

(B–V)0 −0.35 −0.31 −0.16 0.00
Q −0.90 −0.84 −0.43 0.00

MV −5.8 −4.1 −1.1 +0.7



Appendix D: Example Problems

Problem 20: Question

How does the metallicity Z behave formally as the gas fraction µ → 0 in the Simple
Model of chemical evolution? Is this realistic?

Show that in the Simple Model, the mean metallicity of a population of long-lived
stars is given by

〈Z〉 = p

(

Mgas(0)

Mstars
− 1

)

ln

(

1 − Mstars

Mgas(0)

)

+ p ,

where Mgas(t) is the mass of gas in the volume at time t, Mstars(t) is the mass of stars
at time t, and p is the yield.

Show that this can be written as 〈Z〉 = p

(

1 +
µ lnµ

1 − µ

)

in terms of the gas fraction µ.

What is the mean metallicity 〈Z〉 when the gas fraction µ → 0 as gas is used up
entirely in star formation?

You may find helpful the standard integral

∫

ln(1 − x/a) dx = (x − a) ln(1 − x/a) − x + constant.

[Hint: the mean metallicity can be represented as 〈Z〉 =

∫Mstars

0
Z dM ′

stars
∫Mstars

0
dM ′

stars

.]

Problem 21: Question

One variant on the Simple Model of galactic chemical evolution is the ‘leaky-box’
model. This simulates the effect of shocks from supernovae and winds from young
massive stars by allowing gas to leave the box at a rate proportional to the star
formation rate. Therefore the change δMtotal in the total mass Mtotal in the box is

δMtotal = − c δMstars ,

where δMstars is the change in the mass in stars, and c is a constant or proportionality.
Use this to derive an expression for the mass in gas Mgas(t) at time t in terms of
Mtotal(0) and Mstars(t).
Now modify the closed-box relation between δMmetals and δMstars by adding an appro-
priate leaking term.
Use these two expressions to derive

δZ =
p δMstars

Mtotal(0) − (1 + c) Mstars
.

This expression shows that the leaky box model won’t solve the G-dwarf problem?
Why?
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Problem 22: Question

For gravitational lensing, for very distant sources (i.e., DS � DL), we can write the
expression for the Einstein angular radius as

θE = k
√

M/DL ,

where k is a constant. Find the value of k in arcsec if M is measured in solar masses
and DL in parsecs.

Problem 23: Question

An optical microlensing survey images a star field in the Galactic bulge close to the
Galactic centre. Assuming that the dark matter halo is made from compact objects
with approximately stellar masses and has a density distribution

ρ(r) =
ρ

0
b2

r2 + b2
,

where r is the radial distance from the Galactic centre, ρ
0

is the central dark matter
density and b is a constant, derive an expression for the optical depth of microlensing
to the field in terms of ρ

0
, b and R

0
. Express the result in terms of the distance

R
0

of the Sun from the Galactic centre. You may assume that the star field is not
significantly affected by dust extinction for this calculation.
Calculate τ if R

0
= 8.0 kpc, b = 2.0 kpc and ρ

0
= 2.0 × 10−20 kg m−3.

The standard result
∫

r2/(r2 +b2) dr = r − b tan−1(r/b)+constant, may prove useful.

Problem 24: Question

A weakly-interacting massive particle (WIMP) with a mass of 1000 mp, where mp =
1.6726 × 10−27 kg is the mass of the proton, lenses the light of a star in the Large
Magellanic Cloud, which is situated 50 kpc from the Earth. Calculate the Einstein
angular radius of the WIMP if it lies at a distance 20 kpc from the Earth. How
does this figure compare with the angular radius of the star if it has the same radius,
6.96 × 108 m, as the Sun? Will the microlensing effect of the WIMP be noticeable?
Are dark matter microlensing surveys sensitive to the lensing of stars by WIMPs?
What is Einstein angular radius of a brown dwarf with a mass of 0.05M� at the same
location as the WIMP? Will the lensing effect of the brown dwarf on the background
star be noticeable if there is a suitable alignment?
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Problem 25: Question

The separation l between the Galaxy and M31 is expected to obey the equation

d2l

dt2
= − GM

l2
,

over time t, where M is their combined mass, on the assumption that they move only
under their mutual gravitational attraction.

Show that, in addition to the parametric solutions involving sin and cos discussed in
the lectures, the result l = (GMτ 2

0 )1/3(cosh η − 1), t = τ0(sinh η − η), where η is a
parameter, is also a solution to this equation.

Show also that the power law l = k tn is a third solution to the equation, where k and
n are constants, and determine the required values of k and n.

What do these two cases in this question represent physically? What observational
constraints show that these solutions are inappropriate to the real Galaxy–M31 sys-
tem?

Problem 26: Question

The azimuthal velocity of a star in the Galactic disc is vφ and the velocity dispersion
in the azimuthal direction is σφ. If the velocity dispersion at a point is defined by
σ 2

φ ≡ 〈 ( vφ − 〈vφ〉 )2 〉, find an expression for σφ in terms of 〈v 2
φ 〉 and 〈vφ〉.

Obtain similar expressions for σR in terms of 〈v 2
R〉, and for σz in terms of 〈v 2

z 〉, in a
standard (R, φ, z) cylindrical coordinate system with R = 0 at the Galactic Centre
and z = 0 in the Galactic plane.

Show that the asymmetric drift va, circular velocity vcirc and mean value of the az-
imuthal component 〈vφ〉 of the velocity of stars are related by

v 2
circ − 〈vφ〉2 = va(2vcirc − va) ,

at any point in the Galactic disc.

Argue that the asymmetric drift va ' v 2
circ − 〈vφ〉2

2vcirc
for stars belonging to the

Galactic disc.
An analysis based on the Jeans equations in a steady state, axisymmetric potential
shows that

v 2
circ − 〈vφ〉2 = − F 〈v 2

R〉 ,

where F is a factor that depends on the details of the dynamics, but with F ' constant.
Hence show that the asymmetric drift

va ' − F
σ 2

R

2vcirc
,

i.e. that va ∝ σ 2
R approximately.


