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Summer 2004 Examination Paper Model Answers

1. (a) Elliptical and S0 galaxies have relatively red colours. Spiral galaxies have moderately
blue colours, with the colour becoming increasingly blue towards later spiral types
(Sc and Sd). Irregular galaxies have pronounced blue colours.

[Covered in lectures] [2 marks]
(b) The gas fraction is very small for elliptical and S0 galaxies. For spirals, the gas

content increases from type Sa to Sd. Irregulars have a large fraction (' 15 – 50 %)
of their visible mass in the form of gas. [Lectures] [2]

(c) In collisional encounters interactions between individual particles substantially affect
the motions. In collisionless encounters interactions between individual particles do
not substantially affect their motions. [Lectures] [3]

(d) Gas is collisional. [Lectures] [2]
(e) Consider a star of mass m approaching a perturbing star of mass m with an impact

parameter b. Because the encounter is weak, the change in the direction of motion
will be small and the change in velocity will be perpendicular to the initial direction
of motion. At any time t when the separation is r, the component of the gravitational
force perpendicular to the direction of motion will be

Fperp =
Gm2

r2
cos φ ,

where φ is the angle at the perturbing mass between the point of closest approach
and the perturbed star. [2]
Using cos φ = b/r and making the approximation that the speed along the trajectory
is constant, r '

√
b2 + v2t2 if t = 0 at the point of closest approach, by applying

F = ma we obtain
dvperp

dt
=

G m b

(b2 + v2t2)3/2
,

where vperp is the component at time t of the velocity perpendicular to the intial
direction of motion. [3]
Integrating from time −∞ to ∞,

vperp = G m b

∫ ∞

−∞

dt

(b2 + v2t2)3/2
.

Using the standard integral in the question, we obtain the final formula. [Lectures]
[3]

(f) For the globular cluster, Trelax/Tcross ' 1.4×103, giving Trelax ' 7×108 years. This
is much smaller than the age of the globular cluster (' 14×109 years) and therefore
the globular cluster will have relaxed due to two-body encounters over its lifetime.
In contrast, for the galaxy, Trelax/Tcross ' 6 × 108, giving Trelax ' 2 × 1016 years.
This is much larger than the age of the Universe (' 14 × 109 years) and therefore



the galaxy will not have relaxed due to two-body encounters over its lifetime. Two
body encounters are significant in the globular cluster but not for the galaxy.

[Applying principles discussed in lectures] [6]
(g) Two body encounters can be ignored in modelling the dynamics of galaxies.

[Lectures] [2]

2. (a) Expressing the accelation of a particle in terms of the gradient in the gravitational
potential, and the rate of change of position as the velocity,

dvi

dt
= − ∂Φ

∂xi

and
dxi

dt
= vi

for i = 1 to 3. But vi and xi are phase space coordinates, so vi is independent of xi.
Φ is independent of velocity. Therefore,

∂
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∂t
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3∑
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∂f
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+
dvi
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∂f

∂vi

)
= 0

which is the collisionless Boltzmann equation.
Alternatively, use Hamiltonian dynamics. [Lectures] [6]

(b) From the collisionless Boltzmann equation, f is constant. As the density of stars
in space decreases, the density in velocity space must increase, to keep f constant.
Therefore the velocity dispersions must decrease.

[Applying material covered in lectures to a new example] [4]
(c) The Galaxy is in a steady state, so ∂(n〈vz〉)/∂t = 0, and ignoring the negligible

terms,
∂(n〈v2

z〉)
∂z

= − n
∂Φ

∂z [2]
If we observe stars towards the Galactic poles (in the z-direction), Poisson’s equation
reduces to

∂2Φ

∂z2
= 4πGρ

and so
∂

∂z

(
− 1

n

∂

∂z

(
n〈v2

z〉
))

= 4πGρ

[3]
Integrating perpendicular to the galactic plane from −z to z, the surface mass
density within a distance z of the plane at the solar Galactocentric radius R0 is

Σ(R0, z) =

∫ z

−z

ρ dz′ = − 1

2πGn

∂

∂z

(
n〈v2

z〉
)∣∣∣∣

z



assuming symmetry about z = 0. [Lectures] [3]
(d) If the star densities n can be measured as a function of height z from the plane and

the velocities vz measured as spectroscopic radial velocities, we can solve for Σ(R, z)
as a function of z. This gives, after modelling the contribution from the dark matter
halo, the mass density of the Galactic disc. [Lectures] [5]

(e) No significant dark matter is detected in the Galactic disc as a component of the
disc itself. [Lectures] [2]

3. (a) Assumptions behind the Simple Model: (i) the volume of space is a ‘closed box’ (no
gas enters or leaves the volume); (ii) the volume initially contains only unenriched
gas (gas initially of zero metallicity and no stars); (iii) the gas is well mixed (the
same chemical composition throughout); (iv) instantaneous recycling occurs; (v) the
fraction of newly created heavy elements ejected into the gas when gas forms stars
is constant. [Lectures] [1 mark for each, up to a max. of 4]

(b) The total mass in the volume is Mtotal = Mgas(t) + Mstars(t), so a change δMgas in
the gas mass produces a change δMstars = −δMgas in the mass in stars given that
Mtotal = Mgas(0) is constant. [2]
The change in metallicity is therefore

δZ = p
δMstars

Mgas(0)−Mstars(t)
.

[Lecturers] [3]
Integrating from time 0 to t, the metallcity at time t is

Z(t) = p

∫ Mstars(t)

0

dMstars

Mgas(0)−Mstars

= − p ln

(
Mgas(0)−Mstars(t)

Mgas(0)

)
[Lectures] [2]

which gives
Mstars(t) = Mgas(0) (1− e−Z/p)

[Lectures] [1]

(c) Dividing the expression for the mass in stars at time t with the expression at the
present time gives

Mstars(t)

Mstars 1

=
1− e−Z/p

1− e−Z1/p [Lectures] [1]

If we observe a subsample of long-lived stars, each of mass m, the numbers of these
stars at time t will be kMstars where k is a constant for a constant initial mass
function. Therefore the number of stars with a metallicity less than Z will be
N(Z) = kMstars. The number having a metallicity less than the current value is
N1 = kMstars 1. Dividing these,

N(Z)

N1

=
1− e−Z/p

1− e−Z1/p

[Lectures] [4]
(d) The Simple Model predicts far more low metallicity stars than are observed. This

is known as the G dwarf problem. [Lectures] [4]



(e) Pre-enrichment of the gas would reduce the predicted numbers of low-metallicity
stars and would lessen the discrepancy between model and observations.

[Lectures] [2]
(f) Losing enriched gas from the interstellar medium would skew the metallicity distri-

bution to lower heavy element abundances. [Lectures] [2]

4. (a) Optical spectra are restricted to a limited radial distance from the centre of the
galaxy, to typically a few scale lengths. The gravitational effect of an exponential
spiral disc produces a rising rotation curve out to 2− 3 scale lengths. Optical rota-
tion curves typically do not reach a large enough distance from the centre to allow
the signature of a dark halo to be inferred unambiguously. [Lectures] [2]

(b) 21cm radio rotation curves can be observed to considerably greater distance from
the centre of the galaxy than optical curves. They extend well beyond the point at
2 − 3 optical scale lengths where the peak in the circular velocity of a pure expo-
nential disc is found. [Lectures] [2]

(c) The 21cm line is produced by hyperfine transitions in atomic hydrogen between
parallel and anti-parallel angular momentum states, caused by the coupling of the
angular momenta of the proton and electron. [Lectures] [2]

(d) The transition probability is so low that interactions between atoms interfere before
appreciable emission / absorption from the 21cm transition can occur in the labo-
ratory. [Lectures] [1]

(e) The optical depth of microlenses is the fraction of the solid angle covered by the
Einstein rings of the lensing objects. [Lectures] [3]

(f) Consider a field subtending a solid ange Ω. The fraction of this field covered
by Einstein radii of lensing sources at distances between DL and DL + dDL is
dτ = π θ2

E dN / Ω where dN is the number of lenses in this thin volume. If n is
the number density of lenses, dN = n D2

L dDL Ω. The mass density is ρ = nML.
Therefore,

dτ =
π θ2

E ρ D2
L dDL

ML

.

Substituting for the angular Einstein radius and integrating over distance, we obtain
the required result. [Lectures] [7]

(g) The distance of a lens from the Galactic Centre is r =
√

D2
L + R2

0 while the lens-
source distance is DLS = R0 −DL. Substituting for ρ(r) into the expression for the
optical depth,

τ =
2 k

c2DS

∫ R0

0

DL (R0 −DL)

D2
L + R2

0

dDL

=
2 k

c2DS
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0
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0
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0

+
R0 DL

D2
L + R2

0

)
dDL

=
2 k

c2DS

[
−DL + R0 tan−1

(
DL

R0

)
+

R0

2
ln(R2

0 + D2
L)

]R0

0

=
kR0

2c2DS

( 2 ln 2 + π − 4 )



=
k

2c2
( 2 ln 2 + π − 4 ) .

[New application of principles discussed in lectures] [7]
(h) The optical depth for microlensing by compact objects comprising the dark halo is

expected to be very small (∼ 10−7). Therefore very large numbers of stars > 106

must be monitored to give reasonable chances of detecting of microlensing events,
requiring fields with > 106 stars. [Applying principles discussed in lectures] [2]


