
Appendix D: Example Problems

Problem 1: Answer

Integrating over the surface brightness gives the luminosity of a galaxy to be L ∝ I0R
2
0.

Because I0 is constant for all galaxies of this type, L ∝ R2
0 for all. The virial theorem

implies M/R0 ∝ v2, where M is the mass of a galaxy and v is a typical velocity of
stars in a galaxy. Eliminating R0 gives L ∝ M2v−4. Because the mass-to-light ratio
is constant, M/L = constant, so M ∝ L. Substituting for M in L ∝ M2v−4 gives
L ∝ L2v−4, which in turn gives

L ∝ v4 ,

the required result.
This is the same as the Tully-Fisher relation for spiral galaxies, or the Faber-Jackson
relation for elliptical galaxies (and observed samples of both types of galaxies do tend
to have only a limited range in I0 and standard I(R) profiles).

Problem 2: Answer

The first galaxy has a strong continuum with absorption lines and some emission lines
superimposed. This is characteristic of a spiral galaxy: the first galaxy is a spiral.

The very strong emission lines indicate strong star formation. The star formation rate
(which means the mass of interstellar gas forming stars per unit time) is stronger in
the second galaxy than in the first. Very strong emission lines on a stellar continuum is
a characteristic of an irregular galaxy: the second galaxy might be an irregular galaxy.
[However, it could also be a galaxy experiencing a strong burst of star formation
because of an interaction with another galaxy, but we shall not consider this here.
The simplest explanation is that is an irregular galaxy.]

Problem 3: Answer

When two bodies interact, the interaction is collisional if the interactions between
the individual particles in the bodies (molecules for gas, stars for galaxies) affect the
motions substantially. The interactions are collisionless if the interactions between the
individual particles do not affect the motions.

The interaction is collisional because the interactions between stars are important.
This is different to the merger of two galaxies: the star-star encounters are not impor-
tant in the merger.

Some of the total mechanical energy (potential + kinetic energy) is converted into
heat, so the mechanical enery is not conserved. The collapse is dissipative.



Appendix D: Example Problems

Problem 4: Answer

The question gives us the gravitational potential Φ and tells us that the mass distri-
bution has spherical symmetry. To calculate the mass M(r) interior to a radius r we
can use the equation

M(r) =
r2

G

dΦ

dr

(which applies in cases of spherical symmetry). Differentiating the expression for Φ in
the question,

dΦ

dr
=

G Mtot r

(r2 + a2)3/2
, which then gives M(r) =

Mtot r3

(r2 + a2)3/2

(a result that will be given in the lectures).
(We note that limr→∞ M(r) does give Mtot, the total mass, as expected.)

[Incidentally, the M(r) = (r2/G) dΦ/dr equation can be derived quite easily. Gauss’s
Law gives

∫

S
∇Φ · dS = 4πGMS for any closed surface S and for any distribution of

mass, where Φ is the potential at a point on the surface and MS is the total mass
enclosed within that surface. Consider the surface S to be a spherical surface of radius
r centred on the mass distribution. Therefore Φ = Φ(r) is constant over the surface
of radius r.
Using a spherical polar coordinate system (r, θ, φ) centred on the mass distribution
with unit vectors êr, êθ and êφ,

∇Φ ≡ êr
∂Φ

∂r
+ êθ

1

r

∂Φ

∂θ
+ êφ

1

r sin θ

∂Φ

∂φ
= êr

dΦ

dr

in this case because the ∂Φ/∂θ and ∂Φ/∂φ terms are zero on account of the spherical
symmetry. So, ∇Φ is directed radially outwards and |∇Φ| = dΦ/dr .
So ∇Φ and dS are parallel over the whole surface. Therefore ∇Φ·dS = |∇Φ||dS| cos 0
= |∇Φ|dS, which gives in Gauss’s Law,

|∇Φ|

∫

S

dS = 4π G M(r) ,

using the fact that ∇Φ is constant over the surface. Substituting for |∇Φ| = dΦ/dr
we get,

dΦ

dr
(4πr2) = 4π G M(r) ∴ M(r) =

r2

G

dΦ

dr
,

the basic equation used here. But this derivation was not ask for in the question. ]

To determine the density ρ, we can consider a thin spherical shell of radius r and
thickness dr centred on the mass distribution. The volume of the shell is 4πr2dr and
its mass is 4πr2ρ(r)dr where ρ(r) is the density at a radius r. So,

ρ(r) =
1

4π r2

dM

dr
,



the equation of continuity of mass.
Differentiating the expression for M(r) derived above using the product rule,

dM

dr
=

3 Mtot r
2

(r2 + a2)3/2
−

3 Mtot r
4

(r2 + a2)5/2
=

3 Mtot a
2 r2

(r2 + a2)5/2
.

∴ ρ(r) =
3 Mtot

4π

a2

(r2 + a2)5/2
,

the result we had to prove.
As an alternative method, we could use Poisson’s equation ∇2Φ = 4πGρ, which in
this case of spherical symmetry gives

ρ(r) =
1

4πG
∇2Φ =

1

4πG

1

r2

d

dr

(

r2 dΦ

dr

)

.

Substituting for the expression for dΦ/dr from above and differentiating would give
the required result.

Problem 5: Answer

To find M(r), consider a thin spherical shell of radius r and thickness dr concentric
with the galaxy. The mass in the shell will be

dM = 4π r 2 dr ρ(r)

(this is the equation of continuity of mass). Integrating from the centre of the galaxy
(radius = 0) to a radial distance r,

∫ M(r)

0

dM ′ =

∫ r

0

4π r′ 2 dr′ ρ(r′) =

∫ r

0

4π r′ 2 dr′
q a

4π

r′q

r′3 (r′ + a)q+1
Mtot .

∴ M(r) = q a Mtot

∫ r

0

r′q−1

(r′ + a)q+1
dr′ = Mtot

[

r′q

(r′ + a)q

]r

r′=0

on using the standard integral provided. This gives,

M(r) = Mtot

(

rq

(r + a)q
−

0q

(0 + a)q

)

= Mtot
rq

(r + a)q
,

the required result (for all q 6= 0).

We need to calculate the potential Φ(r) for q = 1 (the Jaffe model). The simplest way
to do this is to use

dΦ

dr
=

GM(r)

r2
.

From the answer to the first part of the question, putting q = 1, the mass M(r) interior
to a radius r is

M(r) = Mtot
r

(r + a)
for q = 1.

Therefore,
dΦ

dr
=

G

r2
Mtot

r

(r + a)
=

GMtot

r (r + a)
.



Integrating from a radius r to infinity (remembering that Φ(∞) = 0 from the definition
of gravitational potential),

∫ 0

Φ(r)

dΦ′ = GMtot

∫

∞

r

1

r′ (r′ + a)
dr′ .

This can be solved using partial fractions:

0 − Φ(r) = G Mtot

∫

∞

r

1

a

(

1

r′
−

1

(r′ + a)

)

dr′

− Φ(r) =
G Mtot

a

[

ln r′ − ln(r′ + a)
]

∞

r′=r

=
G Mtot

a

[

ln

(

1

1 + a/r′

) ]

∞

r

= −
G Mtot

a
ln

(

r

r + a

)

=
G Mtot

a
ln

(

r + a

r

)

,

which gives

Φ(r) = −
G Mtot

a
ln

(

r + a

r

)

for the potential at a radius r in the Jaffe (q = 1) model.

Alternatively, we could approach the problem from a more physical perspective and
consider the potential energy released when a particle of mass m is brought from
infinity to a radius r in the presence of the gravitational force F = −GM(r)m/r2.
The potential energy at a distance r from the centre is then Up(r) = mΦ(r), from
which we could calculate Φ(r). This would give the same result as the method above.

If q → 0, the density profile gives ρ = 0 for r > 0. However,

ρ(0) =
a Mtot

4π
lim

q, r→0

q rq

r3 (r + a)q+1
.

So q → 0 implies that all the mass Mtot is concentrated at the centre: it corresponds
to a point mass.
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Problem 6: Answer

The equation of hydrostatic equilibrium contains the pressure gradient dP/dr. We
can relate the pressure to density using the ideal gas law P = ρk

B
T/mp and therefore

get dP/dr by differentiating,

dP

dr
=

d

dr

(

ρ
k

B
T

mp

)

=
k

B
T

mp

dρ

dr

because the temperature T and mean mass of each particle mp are constant throughout
(mp is constant because the chemical composition is the same everywhere). Substitut-
ing for dP/dr into the equation of hydrostatic equilibrium,

1

ρ

k
B
T

mp

dρ

dr
= −

GM(r)

r2
. (a)

The equation of continuity of mass provides information about M(r) through

dM

dr
= 4πr2 ρ(r) ,

for any spherically-symmetric distribution of mass. This involves the derivative of
M(r). To proceed, we can calculate the derivative of M(r) from equation (a) above
so that we can substitute it into the equation of continuity of mass to get an equation
involving ρ and r as the only variables. From (a) we get,

M(r) = −
k

B
T

Gmp

r2

ρ

dρ

dr
. (b)

Differentiating this,

dM

dr
= −

k
B
T

Gmp

d

dr

(

r2

ρ

dρ

dr

)

= −
k

B
T

Gmp

(

2r

ρ

dρ

dr
−

r2

ρ2

(

dρ

dr

)2

+
r2

ρ

d2ρ

dr2

)

(using the product rule for differentiation). Substituting this into the equation of
continuity of mass,

−
k

B
T

Gmp

(

2r

ρ

dρ

dr
−

r2

ρ2

(

dρ

dr

)2

+
r2

ρ

d2ρ

dr2

)

= 4πr2 ρ(r) .

On rearranging this gives

r2

ρ

d2ρ

dr2
−

r2

ρ2

(

dρ

dr

)2

+
2r

ρ

dρ

dr
+

4πGmp

k
B
T

r2ρ = 0 . (c)

This is the second-order differential equation involving ρ and r as the only variables
that the question asks us to find. (Equation ?? in the course notes expresses this in a
slightly different form, but the two expressions are equivalent.)



Try ρ(r) = σ2/2πGr2 as a solution to equation (c). Differentiating,

dρ

dr
= −

σ2

πGr3
and

d2ρ

dr2
=

3σ2

πGr4
.

Substituting these into equation (c), the left-hand side of the equation becomes

r2

ρ

d2ρ

dr2
−

r2

ρ2

(

dρ

dr

)2

+
2r

ρ

dρ

dr
+

4πGmp

k
B
T

r2ρ(r)

= r2

(

2πGr2

σ2

)(

3σ2

πGr4

)

− r2

(

2πGr2

σ2

)2(

−
σ2

πGr3

)2

+ 2r

(

2πGr2

σ2

)(

−
σ2

πGr3

)

+
4πGmp

k
B
T

r2 σ2

2πGr2

= 6 − 4 − 4 +
2mpσ

2

k
B
T

= − 2 + 2

(

mpσ
2

k
B
T

)

= 0 if
mp σ2

k
B
T

= 1 , i.e. if σ =

√

k
B
T

mp
.

So the left-hand side of equation (c) is equal to the right-hand side if σ =
√

k
B
T/mp .

So ρ(r) = σ2/2πGr2 is a solution to equation (c) if σ =
√

k
B
T/mp .

This is the proof that the question asked for.

To find M(r) we can substitute for ρ(r) = σ2/2πGr2 and for dρ/dr into equation (b).
This gives,

M(r) = −
k

B
T

Gmp

r2

(

2πGr2

σ2

)(

−
σ2

πGr3

)

=
2k

B
T

Gmp

r .

Substituting for k
B
T/mp = σ2, we get M(r) =

2σ2

G
r .

This density profile is known the singular isothermal sphere, discussed in Chapter 2.
It was derived here for a gas cloud and applies to gas having a constant temperature T
(an isothermal cloud).

[The same density profile, ρ(r) = σ2/2πGr2, is often used to model the density of
stars in space inside galaxies. When representing stars, σ is the velocity dispersion of
the stars about their mean value. However, some caution should be taken when using
this potential: the density becomes physically unrealistic at the centre (infinite), while
the mass interior to the radius r becomes infinite as r → ∞. This profile should not
therefore be used to represent galaxies close to their cores or at very large radii.]

Problem 7: Answer

Because we have spherical symmetry, the magnitude of the gravitational acceleration
at a distance r from the centre is g = GM(r)/r2 and this will be equal to the gradient
in the gravitational potential, dΦ/dr (from g = −∇Φ for this spherically symmetric
case). Rearranging,

M(r) =
r2

G

dΦ

dr
.



Differentiating the expression for Φ(r) in the question, we get

M(r) = 2πρ0 a2r2

(

2r

r2 + a2
−

2a

r2
tan−1

(r

a

)

+
2a

r

a

r2 + a2

)

using the standard result
d

dx
tan−1

(r

a

)

=
a

r2 + a2
. Rearranging gives,

M(r) = 4πρ0 a2
(

r − a tan−1
(r

a

))

,

the result the question asks us to find.

The circular velocity vcirc is given by
v 2

circ

r
= |g| =

GM(r)

r2
. Therefore,

vcirc =

√

4πρ0 a2

r

(

r − a tan−1
(r

a

))

=

√

4πρ0 a2
(

1 −
a

r
tan−1

(r

a

))

,

for any value of r.

When r ≫ a, tan−1(r/a) ≃ π/2 and a/r ≪ 1. Therefore 1 − a
r
tan−1

(

r
a

)

≃ 1.

So vcirc ≃
√

4πρ0 a2 , a constant.

So the circular velocity is constant at large radii.
This is what is observed in spiral galaxies, as least as far from the centres that rotation
curves can be measured.

For spherical symmetry, the equation of continuity of mass gives dM/dr = 4πr2ρ(r),
where ρ(r) is the density. Therefore, the density at any r is ρ(r) = (dM/dr)/4πr2.
Differentiating the expression for M(r),

dM

dr
= 4πρ0 a2

(

1 −
a2

r2 + a2

)

= 4πρ0 a2

(

r2

r2 + a2

)

on rearranging. This gives for the density

ρ(r) =
1

4πr2

dM

dr
=

1

4πr2
4πρ0 a2

(

r2

r2 + a2

)

=
ρ0 a2

r2 + a2
.

This is the “dark matter” profile.
Putting r = 0, ρ(0) = ρ0. So ρ0 is the central density. a is a softening parameter – it
makes the profile smoother in the central parts of the galaxy than would be the case
if the case if ρ(r) = k/r2, where k is a constant.

The gravitational potential is negative at all times (so that for a mass m the gravita-
tional potential energy U = mΦ is always negative). So Φ0 must be a large negative
constant for Φ(r) to be negative.
As r → ∞, ln(r2 + a2) → ∞ and (2a/r) tan−1(r/a) → 0. Therefore, Φ(r) → ∞.
This is unrealistic as all real potentials should tend to zero as r → ∞ (so that the
potential energy of a particle is zero at very large distance).


