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1. Two objects of mass m; and ms move under their mutual gravitational attraction.
The equation of motion defining the variation of the position vector r of the mass mo
with respect to the mass m; is

f}*+g(m1+mg)§3 =0

where G is the universal gravitational constant.

(a)

Taking the vector product of r with the above equation and using the standard
result, 7 = 77 + r60 for motion in a polar coordinate system, show that

20 = h

where h is a constant. Hence show that the rate of change of the area A swept
out by the radius vector is

dA 1 b

a2 (10 marks)

In a polar coordinate system the acceleration vector is given by
. 1d N
i = (7 — ré*)r + ——<20) 0.
P = (F —rf°)r [T 3 \7

Use the fact that the value of h defined in part (a) is a constant to show that this
equation of motion can be written as the scalar equation

.. : H
P—rf? = —=
2

where 1 = G(my + ms). Use the substitution v = 1/r to derive expressions for 7
and 7 in terms of u,  and h and hence show that the equation of motion can be
written as

d?u Y

ag T R
Write down the solution to this differential equation and hence derive an expres-
sion for r in terms of 6. If the boundary conditions are such that the resulting

motion is an ellipse, relate any constants of integration to the orbital elements
and sketch a plot of r as a function of 8 for 0 < 6 < 2. (15 marks)

Use the derived expression for dA/dt from part (a) and the known geometrical
properties of an ellipse to show that the square of the orbital period of the mass
mso about my is directly proportional to the cube of the semi-major axis of its
orbit for elliptical motion. An asteroid is observed to orbit the Sun with a period

of 8 years. What is its approximate semi-major axis in astronomical units?
(8 marks)



2. In the planar circular restricted three-body problem approximate equations of motion
of the test particle in the rotating frame can be derived in the case where the two
masses mi and ms are such that m; > ms. In a coordinate system centred on
the mass ms and rotating at the same rate as the mean motion of the mass mo the
equations of motion are

where k (= mg/m;) is a constant and A = /z2 4 y? is the distance of the particle
from the mass my. These are known as Hill’s equations and their solution represents
the motion of the test particle in the vicinity of the orbiting mass for the circular
restricted problem.

(a) Show that the equations of motion can be written as

5&—2@:‘;—2 and y+2¢:%—[y]

where U = (3/2)2z% 4+ k/A and hence show that the quantity

k
C:3x2+2z—j:2—y2

is a constant of the motion. How can the existence of C be used to define regions
from which the particle will always be excluded? (10 marks)

(b) Calculate the positions of the two equilibrium points associated with the equations
of motion and determine the critical value, C¢,, of the constant C' at these points.
Use your knowledge of the full circular restricted problem to sketch the curves of
constant C' in the vicinity of the mass ms in the cases where (i) C' < Ceyy, (ii)
C = Cuit and (iii) C' > Ce¢. In each case indicate any region from which the
particle is excluded. (12 marks)

(¢) The Tisserand relation,

— + v/a(l — e2) &~ constant

2a ( )
is an approximate constant of the particle’s motion in the circular restricted
problem, where a and e denote the particle’s semi-major axis and eccentricity
respectively. Setting a = 1 + da in appropriate units and taking da and e to be
small quantities, use the Tisserand relation to show that

3da® — 4¢% ~ constant .

Give a brief description of two practical applications of the Tisserand relation in
the solar system. (11 marks)



3. The torque experienced by a satellite of mass m moving in a circular orbit of radius
r (about a homogeneous planet of radius R) due to the tidal bulge it raises on the

planet is
2 5
I'= Qm— <E> §k2 sin 26.
r 2

r

where ko (a constant) is the Love number of the planet, G is the universal gravitational
constant and 6 is the lag angle.

(a) Let E be the sum of the rotational energy of the planet and the orbital energy
of the satellite—planet system. Show that E, the rate of change of this energy, is
given by

E =100+ %mnzm*

where [ is the moment of inertia of the planet, €2 is the rotational frequency of

the planet and n is the mean motion of the satellite. Since the total energy of
i ?

the system must be conserved, where does this lost energy go* (5 marks)

(b) Use the conservation of the total angular momentum (rotational plus orbital) of
the system and the result from part (a) to show that

. 1
E = —§m7‘m'“(Q —n).
(7 marks)

(c) Given that £ = —I'(Q — n) < 0, use the results from parts (a) and (b) to show
that 7 oc 7~ 11/2 for a given satellite, and give the explicit form of the constant
of proportionality. How can this result be used to provide evidence of significant
tidal evolution in a system of satellites orbiting a planet? (10 marks)

(d) The tidal dissipation function, @ = 1/sin26 is not well determined for most
planets. Suggest a mechanism for placing upper and lower bounds on the value of
Q@ for a given planet from observations of the current masses and orbital elements

of its satellites, assuming that there has been significant orbital evolution.
(6 marks)

(e) The satellite systems of Jupiter and Saturn contain a large number of mean
motion resonances between pairs of satellites. However, there are no known reso-
nances between the major satellites of Uranus. Suggest a mechanism that could
explain this observation. (5 marks)



4. A massless test particle orbits a central star of mass M close to a first-order mean
motion resonance with an external perturbing planet which moves on a circular orbit
around the star. The averaged part of the disturbing function experienced by the
particle due to the perturber is

gm’

R = —f(a)ecosyp

where ¢ = jN + (1 — )\ — w (with positive integer j) is the resonant angle, G is the
universal gravitational constant, m’, a’ and A’ are the mass, semimajor axis and mean
longitude of the perturber, respectively, e is the eccentricity of the particle’s orbit and
A and w are its mean longitude and longitude of pericentre, respectively, and o = a/a’
is the ratio of the semimajor axes of the particle and the perturbing planet.

(a) Ignoring secular terms in the expansion, use Lagrange’s equations and Kepler’s
third law to show that
n=3(1—j)Cnesinp

where n is the particle’s mean motion and C = (m//M)naf(«). (5 marks)

(b) Ignoring the time variation of e, w and the mean longitude at epoch, show that
¢ = (1 — j)n. Hence show that ¢ satisfies the pendulum equation,

¢ = 3(1 — 5)*Cnesin . (5 marks)

(c) In the case of first-order resonances C < 0, and the energy associated with the
pendulum motion of the resonant argument is given by

E = lng —6(1 — j)*Cnesin? lgp.
2 2

Sketch the curves of constant energy in the (- plane and show that the en-

ergy associated with motion on the separatrix (and hence maximum libration)

is Epmax = —6(1 — j)2Cne. Setting E = Ep,.y, derive an expression for ¢, and

hence show that the maximum variation in mean motion for the test particle in

the resonance is
Snmax = *+ (12[C|ne)™? .

What is the corresponding maximum variation in semi-major axis, damax? What
is the principal source of error in this estimate when the eccentricities are small
and why does it arise? (19 marks)

(d) Given that chaotic motion is associated with the overlap of adjacent resonances,
provide a qualitative explanation for the lack of asteroids in the outer par of the
asteroid belt. (4 marks)

End of Examination C.D. Murray



